深度学习的能与不能
demi 在 周四, 08/30/2018 - 09:18 提交
2018(第九届)清洁发展国际融资论坛上,北京交通大学人工智能研究院常务副院长、教授于剑先生从专业角度回顾了人工智能的发展历程,并介绍了深度学习的适用范围和所面临的问题。他指出,深度学习是机器学习领域最引人注目的研究方向,但没有任何一种算法可以解决机器学习所有的应用。
深度学习算法的分类
深度学习在早期被称为神经网络。神经网络是一种特殊的学习方式,在神经网络领域,人们将学习定义为“基于经验数据的函数估计问题”。需要指出,这样的学习定义虽然非常片面,但对于神经网络而言已经够用了。如此一来,如何构造函数,并应用经验数据将其估计出来,就成了神经网络面临的首要问题。
学习算法的分类有很多种。一种分类方式是将学习算法分为傻瓜型学习算法与专家型学习算法。所谓傻瓜型学习算法,就是任何人使用得到的结果都差别不大的学习算法。所谓专家型学习算法,就是专家与普通人使用得到的结果差别巨大的学习算法,每个人得出的结果很难一致。当然,中间还有一些处于两者之间的学习算法,既不是纯傻瓜型的也是不纯专家型的。