demi的博客

GPU硬件加速时系统如何运行呢?

硬件加速,简而言之,硬件加速就是利用硬件模块来替代软件算法以充分利用硬件所固有的快速特性。那么稍加变化就可以知道,GPU硬件加速就是指利用GPU强大的硬件图形处理能力,来代替CPU原本使用的软件模拟图形处理算法,从而充分利用GPU的特长为系统服务。

深度学习中的优化困难

在讲深度学习中优化算法之前,我想有必要对模型优化中常见的挑战有一个总览式的了解,这对于优化算法的理解还是有颇有裨益的。本篇博客是基于古德费洛的《Deep Learing》第8章和杨云的《深度学习实战》第五章总结归纳的。

展望未来,探索AI使能行业价值

在人工智能(AI)高速发展的几年间,AI技术已取得了明显的跃进和快速的迭代,演进路线也呈现出丰富多样化的趋势,如语音识别、语义识别、视觉处理等;但在与行业结合方面,AI却未能将价值较好地实现渗透和落地。因此,在企业纷纷拥抱AI的时候,市面上亦出现方向不明、战略不清、投入不够、执行不力等难题。

六大机器视觉趋势

机器视觉趋势经常被讨论,那么可能影响工业自动化中机器视觉的这些技术的选择和实施有哪些实用的信息?机器视觉市场中3D成像组件的扩展是一个强劲的趋势,这是由对3D测量和指导的高需求以及作为3D成像系统一部分的成本效益技术的可用性的增加所推动的。

细数智能家居不为人知的漏洞,守护你的家居安全

随着5G的到来,消费升级以及技术发展的推动下,智能家居正式进入了飞速发展期。无论是业内人士,还是普通群众,相信都已经看到了智能家居在未来市场中所拥有有的巨大潜力,可以这么说,现在的智能家居就是一个“香饽饽”,是人都想咬一口。

为什么GPU计算能力如此强悍?

本文对CPU与GPU中的逻辑架构进行了对比。其中Control是控制器、ALU算术逻辑单元、Cache是cpu内部缓存、DRAM就是内存。GPU设计者将更多的晶体管用作执行单元,而不是像CPU那样用作复杂的控制单元和缓存。从实际来看,CPU芯片空间的5%是ALU,而GPU空间的40%是ALU。这也是导致GPU计算能力超强的原因。

神经网络中的参数解读

神经网络是一种在很多用例中能够提供最优准确率的机器学习算法。其中参数的理解可能是我们入门的一个小小的难题,在讨论提升神经网络性能的方法,如检查过拟合、调参、超参数调节、数据增强之前,我们先简单介绍常用的神经网络参数,便于后期的学习和理解,以期更快的掌握深度学习,构建更准确的神经网络。