给初学者们讲解人工神经网络(ANN)
demi 在 周二, 09/24/2019 - 14:39 提交
这份教学包是针对那些对人工神经网络(ANN)没有接触过、基本上完全不懂的一批人做的一个简短入门级的介绍。我们首先简要的引入网络模型,然后才开始讲解ANN的相关术语。作为一个应用的案例,我们解释了后向传播算法,毕竟这一算法已经得到广泛应用并且许多别的算法也是从它继承而来的。
这份教学包是针对那些对人工神经网络(ANN)没有接触过、基本上完全不懂的一批人做的一个简短入门级的介绍。我们首先简要的引入网络模型,然后才开始讲解ANN的相关术语。作为一个应用的案例,我们解释了后向传播算法,毕竟这一算法已经得到广泛应用并且许多别的算法也是从它继承而来的。
几年前,大多数人都期望将物联网部署至云端,这的确可以给个人用户带来便捷的使用体验,但构建企业级的物联网解决方案,仍然需要采用云计算和边缘计算的结合方案。与纯粹的云端解决方案相比,包含边缘侧的混合方案可以减少延迟、提高可扩展性、增强对信息的访问量,并使业务开发变得更加敏捷。
1分钟带你秒懂5G世界!
机器学习(深度学习)跟编程范式以及处理的数据等方面根传统的编程有较大不同,需要学习或准备转型做这个领域的需要引起足够的关注。
一切不以安全为前提的技术开发,都是耍流氓。对于自动驾驶汽车而言,安全问题尤为不容忽视。从被动安全到主动安全,再到信息安全,汽车经历了一场技术革命。自动驾驶时代即将来临,数据和信息安全开始愈发引起社会各界的关注。
是否需要人工构造特征,这应该是深度学习和传统机器学习的最明显的差异。feature engining是传统机器学习中的一个重要组成部分,sift,hog,wavelet等都是解决如何描述数据的问题。深度学习兴起后,feature engining的研究几乎停滞,而end-to-end成为一个新兴的研究方向。
最近,一些机构关于人工智能领域的进展、调查、研究和预测,反映了AI的一些问题——比如AI监控在全球范围内的逐渐壮大,企业数据隐私声明忽略了“遵守通用隐私原则”,全球企业对AI的采用日益广泛,以及机构投资者把AI视为一大风险的趋势。
本文就来讨论一下参数初始化到底有什么讲究以及常见的参数初始化的一些策略方法。阅读本文需要神经网络相关背景,能够理解误差反向传播算法的实现过程。
ShaderGraph是基于可编程渲染管线,我们要使用shaderGraph也就需要设置SRP。
与人类相对缓慢的进化不同的是,机器视觉的演进之路是迅速而具有颠覆意义的,机器看世界的方式也在经历着革命性突破。首先是色彩维度,正如婴儿的“视界”早期只有黑白两色,早期的摄影受感光材料以及后期技术的局限只能记录单调的黑白世界。直到19世纪末,随着光学研究的突破,摄影师采用不同颜色滤镜拍摄并经过后期合成彩色照片,使得机器的视觉能力向前迈出第一步。