demi的博客

从硬件角度了解什么是边缘计算

由于物联网和工业物联网设备产生的大量数据,边缘计算呈爆炸式增长。随着5G网络的发展和5G 变得越来越普遍,新设备上线后将产生比以往任何时候都多的数据。因此,许多企业发现使用边缘计算来执行实时、低延迟的数据分析非常有效。边缘计算使本地处理数据接近数据生成源成为可能。

机器学习建模中的Bagging思想!

集成机器学习涉及结合来自多个熟练模型的预测,该算法的成功在于保证弱分类器的多样性。而且集成不稳定的算法也能够得到一个比较明显的性能提升。集成学习是一种思想。当预测建模项目的最佳性能是最重要的结果时,集成学习方法很受欢迎,通常是首选技术。

边缘计算解决什么问题,采用什么模式?

边缘计算是继分布式计算、网格计算、云计算之后的又一新型计算模型。我们认为边缘计算是以云计算为核心,以现代通信网络为途径,以海量智能终端为前沿,通过优化资源配置,使得计算、存储、传输、应用等服务更具智能,具备优势互补、深度协同的资源调度能力,是集云、网、端、智四位一体的新型计算模型。

自动机器学习综述

自从计算机时代开始,科学家和工程师们就一直想知道如何像人类一样,给计算机注入学习的能力。机器学习的最大好处之一是,它可以应用于人类今天面临的几乎任何问题。然而,有了这些好处,也有一些挑战。

支持遥感图像了,Jittor开源物体检测算法库JDet

8月4日,清华大学计图(Jittor)团队发布了遥感图像物体检测算法库JDet,支持S2ANet,Gliding,RetinaNet,Faster R-CNN等主流的遥感图像物体检测模型。希望借助Jittor的性能优势和能较好地支持国产操作系统和芯片的特点,为我国的遥感领域的进步做贡献。