偏差与方差,欠拟合与过拟合
demi 在 周二, 04/23/2019 - 13:51 提交
机器学习的核心在于使用学习算法建立模型,对已建立模型的质量的评价方法和指标不少,本文以准确率(也称为精度)或判定系数(Coefficient of Determination)作为性能指标对模型的偏差与方差、欠拟合与过拟合概念进行探讨。
机器学习的核心在于使用学习算法建立模型,对已建立模型的质量的评价方法和指标不少,本文以准确率(也称为精度)或判定系数(Coefficient of Determination)作为性能指标对模型的偏差与方差、欠拟合与过拟合概念进行探讨。
机器学习只能记住训练数据中存在的模式。你只能认识你已经看到过的东西。利用机器学习对过去的数据进行训练,用于预测未来,这样的做法假设未来的行为将于过去类似。但是,通常并非如此。
在麻省理工学院第五届企业论坛“万物互联”的会议活动中,关于物联网发展现状的调查报告似乎带来了喜忧参半的结果。自该活动启动以来的五年中,物联网和边缘计算领域已经在某些方面得到长足的发展,而在其他领域并没有发生真正重大的变化。
在特征工程之特征选择中,我们讲到了特征选择的一些要点。本篇我们继续讨论特征工程,不过会重点关注于特征表达部分,即如果对某一个特征的具体表现形式做处理。主要包括缺失值处理,特殊的特征处理比如时间和地理位置处理,离散特征的连续化和离散化处理,连续特征的离散化处理几个方面。
OpenGL是一份API规范,并不是一个库。记住这点非常重要!它意味着每一个API背后的具体实现都依赖于你的GPU硬件、操作系统以及显卡驱动。
在Unity3D中,有多种方式可以改变物体的坐标,实现移动的目的,其本质是每帧修改物体的position。
数字信号处理的每个过程差不多都会有噪声出现,而最终得到的图像是噪声与信号的各种作用以后末级产生,噪声处理可以是最后统一处理也可是各个过程的分批处理,所以对噪声的产生以及分类的了解是很有必要的。
在这篇文章中,我将会介绍一些我们在 Cardiogram 中调试 DeepHeart 时用到的技术,DeepHeart 是使用来自 Apple Watch、 Garmin、和 WearOS 的数据预测疾病的深度神经网络。在 Cardiogram 中,我们认为构建 DNN 并不是炼金术,而是工程学。
大环境表明,智能语音技术最广泛的应用还是智能单品(智能音箱、机器人)以及智能家居等领域,且语音识别技术是智能语音技术最为核心的落地技术。但需要提及的是,进入智能语音技术的发展高潮期,智能语音技术是时候该有一些比较新颖的落地场景出现了。
边缘计算指的是接近于事物、数据和行动源头处的计算。进行边缘计算的载体,可以是具有专项处理能力的物联网终端,具有一定运算能力的网关或路由器,或者是具有较强运算能力的部署于场景一侧的服务器。