demi的博客

神经网络训练的一些建议(方差和偏差的问题:正则化)

算法中的learning rate a(学习率)、iterations(梯度下降法循环的数量)、L(隐藏层数目)、n(隐藏层单元数目)、choice of activation function(激活函数的选择)都需要你来设置,这些数字实际上控制了最后的参数W和b的值,所以它们被称作超参数。

CNN初步认识(局部感知、权值共享)

全连接神经网络,需要的参数过多,例如1000*1000的图像,则输入层有10^6个节点,若隐藏层也有10^6个节点,则输入层到隐藏层的参数有10^12个。CNN用局部感知和权值共享大大减少了参数,同时还具备其它优点。它们与自然图像自身具有的特性:特征的局部性与重复性完美贴合。

人工智能法律问题的三个层面,人工智能治理的三点认知

近年来,人工智能技术发展取得了极大的进步,在一些领域甚至超越了人类自身的认知能力。人工智能也从一个纯粹的技术领域一跃成为社会各界共同关注的话题。各国纷纷出台人工智能战略,加强顶层设计,人工智能由此成为国际竞争的新焦点。

关于CNN的七大问!

CNNs是第一个真正成功训练多层网络结构的学习算法。它利用空间关系减少需要学习的参数数目以提高一般前向BP算法的训练性能。CNNs作为一个深度学习架构提出是为了最小化数据的预处理要求。在CNN中,图像的一小部分(局部感受区域)作为层级结构的最低层的输入,信息再依次传输到不同的层,每层通过一个数字滤波器去获得观测数据的最显著的特征。