demi的博客

想知道哪些技术有潜力颠覆未来?看这篇文章就够了

编者按:未来会怎样?没人知道,但是人人都可以设想。从AI、区块链、无人机,到AR/VR、无人车,乃至于物联网、微芯片、纳米机器人、CRISPR,以及智能微尘、数字孪生等,AI专家Adrien Book汇编了各种有可能成为下一个大事物的颠覆性技术,把它们分成无聊的意料之中、还算过得去、非常令人兴奋以及很晦涩但非常令人兴奋这四类,不妨看看谁最有可能率先取得突破吧。

作为一个稍纵即逝的概念,技术被记者、创业者和投资者无休止地关注着,希望靠留意和投资下一个大事物而赚大钱。以至于在这个过程中有时候他们会失去理智,弄出一些非常愚蠢的东西。这群快乐的预言者往往看不到以史为鉴的讽刺性。在一个创新和改变是取得进步的命脉的领域过于依赖过去的数据作为未来情况的信号。

但是读者对此依然买账,因为我们作为人喜欢那种可预测以及清晰的叙述的感觉。因此为了让大家达成一些共识,以下是我对未来科技的一些预测,其中既有以及被讨论得烂大街的无聊东西,也有那些似乎很怪异或者不大可能的东西,对于后者我反而愿意投钱。

无聊的意料之中的东西

AI/机器学习/深度学习

简述汽车发展史

本文简述了汽车发展史,包括汽车萌芽期、成型期、中国汽车工业简史、汽车发展浪潮、无人驾驶兴起与发展以及智能汽车的概述和智能汽车产业链。

世界汽车发展简史

汽车萌芽期

——蒸汽汽车的起因

1478年,意大利科学家、发明家列奥纳多·迪·皮耶罗·达·芬奇(Leonardo di ser Piero da Vinci)第一次提出了具有自推进功能的汽车设计。
1765年,詹姆斯·瓦特(James Watt)改进了蒸汽机设计,制造了第一台有实用价值的蒸汽机,推动了机械工业社会的发展。
1769年,法国工程师尼克拉斯·库纽(NicholasCugnot)在巴黎制造出世界上第一辆整齐驱动的三轮车。

汽车成型期(1885-1913)

——内燃机—发动机发展-底盘发展-材料发展

快速了解深度学习的工作原理

人工智能(AI)和机器学习(ML)是目前最热门的话题。

术语“AI”每天无处不在。经常听到有抱负的开发者说他们想要学习人工智能。还听到高管们说他们希望在他们的服务中实施AI。但很多时候,很多人都不明白AI是什么。

阅读完本文后,您将了解AI和ML的基础知识。更重要的是,您将了解最受欢迎的ML类型深度学习是如何工作的。

背景

了解深度学习如何运作的第一步是掌握重要术语之间的差异。

人工智能与机器学习

人工智能是人类智能在计算机中的复制。

当AI研究首次开始时,研究人员正试图复制人类智能以执行特定任务 - 比如玩游戏。

他们介绍了计算机需要尊重的大量规则。计算机有一个特定的可能操作列表,并根据这些规则做出决策。

机器学习是指机器使用大型数据集而不是硬编码规则进行学习的能力。

ML允许计算机自己学习。这种类型的学习利用了现代计算机的处理能力,可以轻松处理大型数据集。

监督学习与无监督学习

进阶深度学习?这里有9个给程序员的建议

俗话说得好,人往高处走。

在当前人工智能火得一塌糊涂的时候,很多程序员的心思也开始活络起来了。

“要不要转行做人工智能?”

想必是很多程序员心中都有过的念头。

到底该怎么转呢?很多人查了资料之后,一脸懵逼:一边要熟练掌握线性代数、矩阵计算,一边要搞概率论,还要去研究各种库与框架等等。

实在是不知道该从何开始,就拖延了下去,然后很是焦虑。

现在,你不用焦虑了。

国外一个开发者分享了自己的学习过程,并结合自己的经历,给出了9个建议。

这名开发者名叫Alexey Gaziev,是一家社交媒体管理创业公司的CTO,原来是一名Ruby开发者,后来自己学习深度学习。

在开始之前,我们先跟着Alexey澄清一下相关的概念:机器学习是实现人工智能的一组工具,深度学习是机器学习的一个特定子集。

好了,下面正式开始。

1、不要焦虑

可能你不太喜欢数学。就我个人而言,自从八年前毕业后,在开始学习深度学习之前,都没有再碰过数学教科书了。

但在你想要转行做人工智能之前,用谷歌进行一些简单的搜索并与周围比较喜欢数学的人交谈后,你会形成这样一个认知:

机器学习算法综述

近些年来,随着大数据、云计算、移动互联网、人工智能技术的兴起,“机器学习”成为了行业内炙手可热的一个名词。从通信互联网领域的专家,到各式各样的企业,甚至到普通的老百姓,都对“机器学习”技术略知一二。那么,机器学习到底是什么,它与我们常见的“人工智能”、“神经网络”、“数据挖掘“等相似概念都有什么关系?机器学习有那些基本分支、基本方法?在本文中,我们将用最简单易懂的语言解释这些问题。

问题一:“机器学习”和“人工智能”的关系是什么?

随着“机器学习”火起来的还有一个词语,即“人工智能”。每个人都肯定还记得不久以前的AlaphGo,随着机器打败围棋顶级高手李世石,人们也不得不感叹:“人工智能”时代真正到来了。

那么,“机器学习”和“人工智能”的关系到底是什么尼?其实,“人工智能”是一个很大的学科领域,里面包含很多子领域,如“机器学习”,“数据挖掘”,“模式识别”,“自然语言处理”等。这些子领域可能有交叉,但侧重点往往不同。比如”机器学习“就比较侧重于算法方面。总的来说,“人工智能”是一个学科领域,是我们研究的最终目的,而”机器学习“是这个领域中比较核心的,比较重要的,侧重于算法的一门学科,可以说,“人工智能”和“机器学习”是包含与被包含的关系。

图像识别过程(概念)

图像处理(imageProcessing)利用计算机对图像进行分析,以达到所需的结果。图像处理可分为模拟图像处理和数字图像处理,而图像处理一般指数字图像处理。这种处理大多数是依赖于软件实现的。其目的是去除干扰、噪声,将原始图像编程适于计算机进行特征提取的形式,主要包括图像采样、图像增强、图像复原、图像编码与压缩和图像分割。

(1)图像采样

图像采集是数字图像数据提取的主要方式。数字图像主要借助于数字摄像机、扫描仪、数码相机等设备经过采样数字化得到的图像,也包括一些动态图像,并可以将其转为数字图像,和文字、图形、声音一起存储在计算机内,显示在计算机的屏幕上。图像的提取是将一个图像变换为适合计算机处理的形式的第一步。

(2)图像增强

2019年物联网九大预测

到2020年,物联网(IoT)预计将产生3440亿美元的额外收入,同时还会降低1770亿美元的经营成本。物联网和智能设备已经在提高全球主要工厂的性能指标,并将生产率水平提高40-60%。

以下预测探讨了2019年物联网的发展状况,内容涵盖物联网对业务和技术等方面的影响,包括数字化转型、区块链、人工智能(AI)和5G。

物联网预测一、数据和设备的增长

在2019年,将有大约36亿台设备主动连接到互联网,用于日常任务。随着5G的推出,将为更多设备和数据流量打开大门。您可以通过增加边缘计算的使用来应对这种趋势,这将使企业更容易、更快地在接近操作点处理数据。

物联网预测二、物联网和数字化转型

物联网是多个行业数字化转型的关键驱动力。传感器、RFID标签和智能信标已经开始了下一次工业革命。市场分析师预测,2018年至2020年间,制造业中连网设备的数量将翻一番。

软件光栅器实现(一、管线概述)

一个半月的时间实现了一个软件光栅器,这个是导入茶壶obj文件后的效果,主要难点在于:

1、Cohen-SutherLand CVV裁剪(两周工作量)
2、法线贴图(一周)
3、OBJ,MTL文件解析和加载(三天)

软件光栅器实现(一、管线概述)

该系列博文主要介绍软光栅的实现思路,设计到的诸如裁剪、切空间计算和光照模型等公示不是本文重点,此类信息可以查阅相关文献。本节先对软件光栅器定义进行介绍,并介绍光栅器的实现过程,这对程序的实现是算是一个宏观的概括和总结。转载请注明出处。

什么是软件光栅器?它和硬件光栅器有何区别?

【译】自然语言处理中的深度学习:优势与挑战

本文翻译自李航老师发表在 National Science Review 上关于自然语言处理中的深度学习文章,该文讨论了目前存在的优势与挑战。

自然语言处理中的深度学习:优势与挑战

1. 引言

深度学习指学习和使用 “深度” 人工神经网络的机器学习技术,比如深度神经网络(DNN)、卷积神经网络(CNN)和循环神经网络(RNN)。近来,深度学习成功地应用在 NLP 中并取得了很多重要的进展。这篇文章总结了深度学习在 NLP 中取得的进展,最后讨论它的优势和面临的挑战。

基于双目视觉的无人驾驶算法

引言

基于现实世界是一个三维空间,所以对计算机视觉的研究也应该是在三维空间中进行的。在自动驾驶过程中的首要任务就是道路识别 [1],主要是图像特征法和模型匹配法来进行识别。行驶过程中需要进行障碍物检测 [2] 和路标路牌识别等,此时车辆,上的信息采集便可以运用单目视觉或者多目视觉。相比之下,运用多目视觉更具优势,获取的图像信息可构建成三维空间物体运动以及遮挡等问题对其影响较小。目前有很多智能小车的研究都是基于室内环境的研究,本文基于室外环境,采用双目摄像机模型 [3],考虑光照、路面材质等问题,采用分水岭算法 [4] 对智能车的区域进行定位,以及在行驶区域中采用多阈值 canny 算法来进行障碍物的检测,进而计算出障碍物大小位置等信息。

分水岭算法