Unity人工智能学习—确定性AI算法之追踪算法(二)
demi 在 周四, 07/11/2019 - 15:26 提交
上一篇讲到了追踪算法的比较简单的形式,看上去比较假,因为AI控制的对象过于精确地跟踪目标。一种更自然的追踪方式可以这样做,使得跟踪者的方向矢量与从跟踪目标的中心到跟踪者的中心所定义的方向矢量靠拢。
上一篇讲到了追踪算法的比较简单的形式,看上去比较假,因为AI控制的对象过于精确地跟踪目标。一种更自然的追踪方式可以这样做,使得跟踪者的方向矢量与从跟踪目标的中心到跟踪者的中心所定义的方向矢量靠拢。
人工神经网络有两个重要的超参数,用于控制网络的体系结构或拓扑:层数和每个隐藏层中的节点数。配置网络时,必须指定这些参数的值。
我们都知道,卷积核的作用在于特征的抽取,越是大的卷积核尺寸就意味着更大的感受野,当然随之而来的是更多的参数。早在1998年,LeCun大神发布的LetNet-5模型中就会出,图像空域内具有局部相关性,卷积的过程是对局部相关性的一种抽取。 但是在学习卷积神经网络的过程中,我们常常会看到一股清流般的存在—1*1的卷积!
作为一个未来主义者,我每天都在思考人工智能的演变。最被炒作的技术也是最复杂、最普遍、最难监测、监管和控制的技术。机器学习实现的发展已经有了“自己的生命”,超出了任何一家公司、国家或学术机构的范围。在资本和创新的驱动下,人工智能是一个特洛伊木马,既能帮助、增强、自动化,又能将人类武装起来相互对抗。这既令人兴奋,又令人恐惧,而且不可避免。但具体包括哪些内容呢?
物联网(IoT)正在以前所未有的速度发展,这为企业创造了新的业务机会,并有助于他们在长期竞争中立于不败之地。
人工智能是一种引发诸多领域产生颠覆性变革的前沿技术,而生物识别技术的应用特别是在计算机视觉中的应用,在当前智慧社区建设中发挥很大作用。原有的被动识别、被动管理技术实现模式逐渐由人工智能技术代替,从而实现主动识别、无感采集、主动辨识的技术能力......
dropout是指在深度学习网络的训练过程中,对于神经网络单元,按照一定的概率将其暂时从网络中丢弃。注意是暂时,对于随机梯度下降来说,由于是随机丢弃,故而每一个mini-batch都在训练不同的网络。
数字图像处理(Digital Image Processing)是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。
这篇文章介绍深度学习四种主流的规范化, 分别是Batch Normalization(BN[9]), Layer Normalization(LN[7]), Instance Normalization(IN[8])以及Group Normalization(GN[2])。
常见的一个误解便是将HDR和Bloom效果混为一谈。Bloom可以模拟出HDR的效果,但是原理上和HDR相差甚远。HDR实际上是通过映射技术,来达到整体调整全局亮度属性的,这种调整是颜色,强度等都可以进行调整,而Bloom仅仅是能够将光照范围调高达到过饱和,也就是让亮的地方更亮。不过Bloom效果实现起来简单,性能消耗也小,却也可以达到不错的效果。