彻底理解数字图像处理中的卷积——以Sobel算子为例
demi 在 周五, 08/24/2018 - 14:00 提交
卷积在信号处理领域有极其广泛的应用,也有严格的物理和数学定义。本文只讨论卷积在数字图像处理中的应用。
在数字图像处理中,有一种基本的处理方法:线性滤波。待处理的平面数字图像可被看做一个大矩阵,图像的每个像素对应着矩阵的每个元素,假设我们平面的分辨率是 1024 * 768,那么对应的大矩阵的行数= 1024,列数=768 。
用于滤波的是一个滤波器小矩阵(也叫卷积核),滤波器小矩阵一般是个方阵,也就是行数和列数相同,比如常见的用于边缘检测的 Sobel 算子 就是两个 3*3 的小矩阵.
进行滤波就是对于大矩阵中的每个像素,计算它周围像素和滤波器矩阵对应位置元素的乘积,然后把结果相加到一起,最终得到的值就作为该像素的新值,这样就完成了一次滤波。
上面的处理过程可以参考这个示意图:
图像卷积计算示意图: