demi的博客

数据预处理详解

由于当今数据的数量庞大且来自于各种不同类型的来源,因此出现数据异常的可能性不断增加。鉴于高质量数据可生成更好的模型和预测,数据预处理的重要性与日俱增,并且已经成为数据科学、机器学习、AI 管道中的基本步骤。在本文中,我们将探讨数据处理需求,并讨论用于完成此流程中每个步骤的不同方法。

深度学习—BN的理解(一)

机器学习领域有个很重要的假设:IID独立同分布假设,就是假设训练数据和测试数据是满足相同分布的,这是通过训练数据获得的模型能够在测试集获得好的效果的一个基本保障。那BatchNorm的作用是什么呢?BatchNorm就是在深度神经网络训练过程中使得每一层神经网络的输入保持相同分布的。

图像处理(1)频域滤波与空间域滤波比较

空间域滤波是在图像空间中借助模板对图像进行邻域操作,处理图像的每一个像素的取值都是根据模板对输入像素邻域内的像素值进行加权叠加得到的。空间域滤波是让图像在频域空间内某个范围的分量受到抑制,同时保证其他分量不变,从而改变图像的频率分布。空间域滤波是应用模板卷积对图像每一个像素进行局部处理。

机器学习简介

虽然机器学习的基本概念已经存在了一段时间,但这一领域最近才迅猛发展,这要归功于先进的处理器和丰富的可用数据,这两者都是实现精确预测的关键。因为介绍机器学习历史的内容很多,所以本文不再赘述。我们在这里为您提供了一种实用的方法来理解必要的概念,帮助您入门。