谈谈GPU与FPGA的一些看法
demi 在 周四, 09/13/2018 - 16:51 提交
从几个方面来介绍一下GPU和FPGA。
从峰值性能来说,GPU(10Tflops)远远高于FPGA(<1TFlops)。GPU上面成千上万个core同时跑在GHz的频率上还是非常壮观的,最新的GPU峰值性能可达10TFlops以上。GPU的架构经过仔细设计(例如使用深度流水线,retiming等技巧),在电路实现上是基于标准单元库而在critical path上可以用手工定制电路,甚至在必要的情形下可以让半导体fab依据设计需求微调工艺制程,因此可以让许多core同时跑在非常高的频率。相对而言,FPGA首先设计资源受到很大的限制,例如GPU如果想多加几个core只要增加芯片面积就行,但FPGA一旦你型号选定了逻辑资源上限就确定了(浮点运算在FPGA里会占用很多资源)。而且,FPGA里面的逻辑单元是基于SRAM-查找表,其性能会比GPU里面的标准逻辑单元差好多。最后,FPGA的布线资源也受限制(有些线必须要绕很远),不像GPU这样走ASIC flow可以随意布线,这也会限制性能。
除了芯片性能外,GPU相对于FPGA还有一个优势就是内存接口。GPU的内存接口(传统的GDDR,最近更是用上了HBM和HBM2)的带宽远好于FPGA的传统DDR接口,而众所周知服务器端机器学习算法需要频繁访问内存。