人脸检测中几种框框大小的选择~
demi 在 周二, 09/25/2018 - 10:14 提交
人脸检测应用极为广泛,内部细节也偏多,尤其是涉及到几种类型的框,这几种框的大小之前有着千丝万缕的联系,对检测性能的好坏影响程度大小不一。本篇文章基于自己在人脸检测方面的经验,说说对这些框之间关系的一些理解。
现在大部分人脸检测效果都已adaboost+LBP(各种改进)的方式实现,adaboost由N个强分类器组成,每个强分类器由M个弱分类器组成,而每个弱分类器其实就是一个特征。
本文以LBP特征为例,人脸检测共涉及到如下几类框:
1. LBP特征矩形框大小(极为重要)
2. 检测框大小(重要)
3. 检测目标大小(次要)
4. 原始训练样本大小(重要)
5. 图像大小(不重要)
其中,LBP特征矩形框大小一般由四个量组成,它们是:矩形框相对于模板的位置(x, y),矩形框的大小(w, h)。这四个变量均可以自由改变,只是有一个约束,那就是原始训练样本的大小(这也是我说的联系1)。
联系1:假设原始训练样本大小为28*28,那么LBP特征矩形框四个变量的取值均在[0-28]之内。