demi的博客

在未来和AI争夺工作的16个实用技巧!

如今,许多公司都已经开始利用人工智能和机器学习,并且这些技术的影响只会越来越大。虽然这对于想要提高业绩的企业来说是件好事,但许多员工也担心机器人会在未来几年内取代他们的工作。

虽然人工智能可能会改变某些类型的工作,但它们永远不会完全取代人类的工作——你只需要知道如何维持并推销你的技能。来自福布斯教练委员会(Forbes Coaches Council)的成员们分享了一些技巧,让你可以在未来的职业生涯中获取所需的技能。

1. 学会理解数据的价值

虽然新的创新将要求每个人对技术越来越熟悉,但是这并不意味着每个人都能精通技术。而在学习计算和解释数据方面,技术则是一股很大的力量。这项技能将会见证劳动力需求的增加,并将有助于巩固作为雇员或潜在领导者的价值。——LaKisha Greenwade, Lucki Fit LLC

2. 学习,执行,教导,服务

机器人要崛起:人工智能将来能够直接解读人脑电波

神经科学家正在教导计算机直接从人脑中读出单词。近日,《科学》(Science)杂志的专职撰稿人凯利·塞维克(Kelly Servick)报道了预印本网站bioRxiv发表的3篇论文。在论文中,3个研究团队各自展示了他们如何将神经活动记录解码成语音。在这3个研究中,研究人员在进行脑外科手术的患者大脑上直接放置了电极,当他们听取语音或者大声朗读文字时,这些电极就记录神经元的活动。接着,研究人员尝试解读患者听到或说出的内容,患者大脑的电活动都转化成了某种程度上能够理解的声音文件。

第一篇论文发表在bioRxiv上,描述了研究人员向正在进行脑外科手术的癫痫患者播放语音的实验。需要指出的是,实验中采集的神经活动记录必须非常详细,才能用于解读。而且这种详细的程度必须在十分罕见的条件(比如脑外科手术)下才能达到,此时大脑暴露在空气中,电极直接放在上面。

当患者听取声音文件时,研究人员记录了患者大脑中处理声音部分的神经元活动。他们尝试了多种方法将神经元活动数据转化成语音,发现“深度学习”的效果最佳。深度学习是机器学习的分支,计算机可以在无人管理的情况下,通过深度学习来解决问题。当研究人员通过一个合成人类声音的声码器播放转化结果时,由11个听众组成的小组解读这些词的准确率是75%。

《常用算法之智能计算 (二) 》:神经网络计算

神经网络计算(Neural Network Computing NNC)是通过对人脑的基本单元——神经元的模拟,经过输入层、隐层、输出层等层次结构,对数据进行调整、评估和分析计算,得到的一类具有学习、联想、记忆和模式识别等功能的智能算法。要想比较深入的理解神经网络计算,就必须对神经网络系统有一定的理解,本文对其进行一些简单介绍。

人社部拟发布15项新职业,涉及人工智能电子竞技等行业

近年来,伴随人工智能、电子竞技等新兴产业的发展,新职业也层出不穷。人力资源和社会保障部初步确定人工智能工程技术人员等15个拟发布新职业。既有现在流行的人工智能、大数据等技术人员;也有不常听说的农业经理人、数字化管理师;还有离我们生活很近的城市轨道交通相关技术人员。

什么是DNS缓存中毒?如何防止DNS缓存中毒攻击

近来,网络上出现互联网漏洞——DNS缓存漏洞,此漏洞直指我们应用中互联网脆弱的安全系统,而安全性差的根源在于设计缺陷。利用该漏洞轻则可以让用户无法打开网页,重则是网络钓鱼和金融诈骗,给受害者造成巨大损失。

《常用算法之智能计算 (一) 》:智能计算概述

智能计算(Intellectual Computing,IC),也称计算智能(Computational Intelligence,CI)或软计算(Soft Computing,SC),是受人类组织、生物界及其功能和有关学科内部规律的启迪,根据其原理模仿设计出来的求解问题的一类算法。智能计算所含算法的范围很广,主要包括神经网络、机器学习、遗传算法......

2019智能家居五大趋势面面观

随着智能家居市场的逐渐成熟,入局的玩家越来越多,看清未来几年的行业趋势,有助于企业更好地决策。2019年智能家居呈现出五大趋势:①语音控制的产品形态增多②技术推动智能家居发展③全屋智能④家居安全成关注重点⑤智能家居B端市场热火朝天

开启未来,AI+教育的两种应用场景

随着人工智能技术的发展,其与各行业的结合已经成为未来的发展趋势,在教育行业,AI+教育已经被普遍看好。2018年,资本、企业和市场都开始理性看待AI+教育。本文从政策的角度出发,分析了AI+教育火热发展的原因,同时对人工智能对教育的影响对了深入的解读。

机器学习失败的 6 种原因,你中招了吗?

一般来说,学习的过程通常意味着先犯错误以及选择错误的道路,然后再想明白如何在将来避免这些陷阱。机器学习也不例外。当你在你的企业中运用机器学习时,要小心:一些技术营销可能会告诉你机器学习的过程是又快又好的,但这是一种对技术的不切实际的期望。事实是,机器学习过程中必定会出现错误。