CNN

CNN初步认识(局部感知、权值共享)

全连接神经网络,需要的参数过多,例如1000*1000的图像,则输入层有10^6个节点,若隐藏层也有10^6个节点,则输入层到隐藏层的参数有10^12个。CNN用局部感知和权值共享大大减少了参数,同时还具备其它优点。它们与自然图像自身具有的特性:特征的局部性与重复性完美贴合。

关于CNN的七大问!

CNNs是第一个真正成功训练多层网络结构的学习算法。它利用空间关系减少需要学习的参数数目以提高一般前向BP算法的训练性能。CNNs作为一个深度学习架构提出是为了最小化数据的预处理要求。在CNN中,图像的一小部分(局部感受区域)作为层级结构的最低层的输入,信息再依次传输到不同的层,每层通过一个数字滤波器去获得观测数据的最显著的特征。

彻底搞懂CNN中的卷积和反卷积

卷积和反卷积在CNN中经常被用到,想要彻底搞懂并不是那么容易。本文主要分三个部分来讲解卷积和反卷积,分别包括概念、工作过程、代码示例,其中代码实践部分主结合TensorFlow框架来进行实践。给大家介绍一个卷积过程的可视化工具,这个项目是github上面的一个开源项目。

CNN、RNN、DNN的内部网络结构有什么区别?

神经网络技术起源于上世纪五、六十年代,当时叫感知机(perceptron),拥有输入层、输出层和一个隐含层。输入的特征向量通过隐含层变换达到输出层,在输出层得到分类结果。早期感知机的推动者是Rosenblatt。

卷积神经网络(CNN)反向传播算法

在卷积神经网络(CNN)前向传播算法中,我们对CNN的前向传播算法做了总结,基于CNN前向传播算法的基础,我们下面就对CNN的反向传播算法做一个总结。在阅读本文前,建议先研究DNN的反向传播算法:深度神经网络(DNN)反向传播算法(BP)

卷积神经网络物体检测之感受野大小计算

学习RCNN系列论文时, 出现了感受野(receptive field)的名词, 感受野的尺寸大小是如何计算的,在网上没有搜到特别详细的介绍, 为了加深印象,记录下自己对这一感念的理解,希望对理解基于CNN的物体检测过程有所帮助。

CNN中几个新的卷积方式

在图像识别中,卷积神经网络(CNN)无疑是现在最先进的方法。CNN的基础操作是对图像中的局部区域做卷积提取特征,在每一层的卷积中使用相同的卷积核(共享参数)以减少参数数量,再结合池化(pooling)操作可以实现位移不变性的识别。