神经网络

对偶传播神经网络(CPN)

1987年,美国学者Robert Hecht-Nielsen提出了对偶传播神经网络模型 (Counter Propagation Network,CPN),CPN最早是用来实现样本选择匹配系统的。CPN 网能存储二进制或模拟值的模式对,因此这种网络模型也可用于联想存储、模式分类、函数逼近、统计分析和数据压缩等用途。

作为机器学习研究者,你需要了解的八种神经网络结构!

这篇文章主要介绍了机器学习中最先进的算法之一——神经网络的八种不同架构,并从原理和适用范围进行了解读。机器学习和神经网络如此优秀,我们先来探讨两个问题——为什么需要机器学习?为何要使用神经网络?之后在来详细了解八种不同的网络架构。

卷积神经网络基础知识和相关算法汇总版

神经网络的发展史可以分为三个阶段,第一个阶段是Frank Rosenblatt提出的感知机模型,感知机模型的逻辑简单有效,但不能处理异或等非线性问题。第二个阶段是Rumelhart等提出的反向传播算法,该算法使用梯度更新权值,使多层神经网络的训练成为可能。第三个阶段得益于计算机硬件的发展和大数据时代的到来,促进了深度神经网络的发展。

从数学角度看神经网络是如何工作的?

如今,即便是结构非常复杂的神经网络,只要使用Keras,TensorFlow,MxNet或PyTorch等先进的专业库和框架,仅需几行代码就能轻松实现。而且,你不需要担心权重矩阵的参数大小,也不需要刻意记住要用到的激活函数公式,这可以极大的避免我们走弯路并大大简化了建立神经网络的工作。然而,我们还是需要对神经网络内部有足够的了解,这对诸如网络结构选择、超参数调整或优化等任务会有很大帮助。本文我们将会从数学角度来充分了解神经网络是如何工作的。

Imagination诚邀您在2019 SiFive 中国技术研讨会上聆听“神经网络加速赋能端侧智能”

SiFive公司将于6月17日在深圳举办SiFive Technology Workshop。Imagination公司作为RISC-V生态伙伴应邀参加了本次活动,并将在活动上做“神经网络加速赋能端侧智能”的主题演讲。欢迎您参加会议,了解最先进的IP技术。