卷积

深度学习卷积操作的维度计算

卷积操作的维度计算是定义神经网络结构的重要问题,在使用如PyTorch、Tensorflow等深度学习框架搭建神经网络的时候,对每一层输入的维度和输出的维度都必须计算准确,否则容易出错,这里将详细说明相关的维度计算。

抽丝剥茧,带你理解转置卷积(反卷积)

转置卷积又叫反卷积、逆卷积。不过转置卷积是目前最为正规和主流的名称,因为这个名称更加贴切的描述了卷积的计算过程,而其他的名字容易造成误导。在主流的深度学习框架中,如TensorFlow,Pytorch,Keras中的函数名都是conv_transpose。

CNN中几个新的卷积方式

在图像识别中,卷积神经网络(CNN)无疑是现在最先进的方法。CNN的基础操作是对图像中的局部区域做卷积提取特征,在每一层的卷积中使用相同的卷积核(共享参数)以减少参数数量,再结合池化(pooling)操作可以实现位移不变性的识别。

形象理解深度学习中八大类型卷积

本文总结了深度学习中常用的八大类型的卷积,以非常形象的方式帮助你建立直觉理解,为你的深度学习提供有益的参考。分别是单通道卷积、多通道卷积、3D卷积、1 x 1卷积、转置卷积、扩张卷积、可分离卷积、分组卷积。

理解CNN卷积层与池化层计算

深度学习中CNN网络是核心,对CNN网络来说卷积层与池化层的计算至关重要,不同的步长、填充方式、卷积核大小、池化层策略等都会对最终输出模型与参数、计算复杂度产生重要影响,本文将从卷积层与池化层计算这些相关参数出发,演示一下不同步长、填充方式、卷积核大小计算结果差异。