卷积

卷积神经网络的卷积核大小、个数,卷积层数如何确定呢?

卷积神经网络的卷积核大小、卷积层数、每层map个数都是如何确定下来的呢?看到有些答案是刚开始随机初始化卷积核大小,卷积层数和map个数是根据经验来设定的,但这个里面应该是有深层次原因吧?

如何理解卷积神经网络中的1*1卷积

我们都知道,卷积核的作用在于特征的抽取,越是大的卷积核尺寸就意味着更大的感受野,当然随之而来的是更多的参数。早在1998年,LeCun大神发布的LetNet-5模型中就会出,图像空域内具有局部相关性,卷积的过程是对局部相关性的一种抽取。 但是在学习卷积神经网络的过程中,我们常常会看到一股清流般的存在—1*1的卷积!

彻底搞懂CNN中的卷积和反卷积

卷积和反卷积在CNN中经常被用到,想要彻底搞懂并不是那么容易。本文主要分三个部分来讲解卷积和反卷积,分别包括概念、工作过程、代码示例,其中代码实践部分主结合TensorFlow框架来进行实践。给大家介绍一个卷积过程的可视化工具,这个项目是github上面的一个开源项目。

卷积神经网络基础知识和相关算法汇总版

神经网络的发展史可以分为三个阶段,第一个阶段是Frank Rosenblatt提出的感知机模型,感知机模型的逻辑简单有效,但不能处理异或等非线性问题。第二个阶段是Rumelhart等提出的反向传播算法,该算法使用梯度更新权值,使多层神经网络的训练成为可能。第三个阶段得益于计算机硬件的发展和大数据时代的到来,促进了深度神经网络的发展。

深度学习卷积操作的维度计算

卷积操作的维度计算是定义神经网络结构的重要问题,在使用如PyTorch、Tensorflow等深度学习框架搭建神经网络的时候,对每一层输入的维度和输出的维度都必须计算准确,否则容易出错,这里将详细说明相关的维度计算。