Kaggle知识点:半监督机器学习
demi 在 周四, 07/25/2024 - 10:00 提交
半监督学习是一种训练数据中部分样本没有标签的情况。
半监督学习是一种训练数据中部分样本没有标签的情况。
为什么半监督学习是机器学习的未来。监督学习是人工智能领域的第一种学习类型。从它的概念开始,无数的算法,从简单的逻辑回归到大规模的神经网络,都已经被研究用来提高精确度和预测能力。然而,一个重大突破揭示了添加“无监督数据”可以提高模型泛化和性能。事实上,在非常多的场景中,带有标签的数据并不容易获得……
半监督学习 (SSL) 是一种非常有趣的方法,用来解决机器学习中缺少标签数据的问题。SSL利用未标记的数据和标记的数据集来学习任务。SSL的目标是得到比单独使用标记数据训练的监督学习模型更好的结果。这是关于半监督学习的系列文章的第2部分,详细介绍了一些基本的SSL技术。
半监督学习(SSL)是一种机器学习技术,其中任务是从一个小的带标签的数据集和相对较大的未带标签的数据中学习得到的。SSL的目标是要比单独使用有标记数据训练的监督学习技术得到更好的结果。这是半监督学习系列文章的第1部分,对这个机器学习的重要子领域进行了简要的介绍。
数据是机器学习的基础。巧妇难为无米之炊,再牛x的机器学习算法,脱离了数据就是空中楼阁。根据使用的数据样本是否具有标签,可大致将传统的机器学习方法分为监督学习方法和无监督学习方法。其中,无监督学习方法使用的训练样本没有标签;监督学习方法使用的训练样本带有明确的标签。
计算机视觉的半监督学习方法在过去几年得到了快速发展。目前最先进的方法是在结构和损失函数方面对之前的工作进行了简化,以及引入了通过混合不同方案的混合方法。在这篇文章中,作者会通过图解的方式解释最近的半监督学习方法的关键思想。
大多数安全场景对应的安全样本数据都比较少,包括黑样本和白样本,样本数据的缺失直接限制了机器学习技术的应用,这是目前机器学习应用于安全实践中的难题之一。是解决问题还是规避问题呢?这个可以从有监督/无监督/半监督学习的角度来由果推因。