机器学习-随机森林
demi 在 周一, 12/23/2019 - 17:23 提交
随机森林就是通过集成学习的思想将多棵树集成的一种算法,它的基本单元是决策树,而它的本质属于机器学习的一大分支——集成学习(Ensemble Learning)方法。

随机森林就是通过集成学习的思想将多棵树集成的一种算法,它的基本单元是决策树,而它的本质属于机器学习的一大分支——集成学习(Ensemble Learning)方法。

随机森林是现在比较流行的一个算法。对于回归和分类问题有很好的效果。大家有可能有过这样的经历,辛辛苦苦搭好神经网络,最后预测的准确率还不如随机森林。既然随机森林这么好用,那它的内在的机理到底是什么呢?接下来将会用通俗易懂的方式讲一讲随机森林。

决策树是机器学习最基本的模型,在不考虑其他复杂情况下,我们可以用一句话来描述决策树:如果得分大于等于60分,那么你及格了。

在集成学习原理小结中,我们讲到了集成学习有两个流派,一个是boosting派系,它的特点是各个弱学习器之间有依赖关系。另一种是bagging流派,它的特点是各个弱学习器之间没有依赖关系,可以并行拟合。本文就对集成学习中Bagging与随机森林算法做一个总结。