神经网络的利用率和

1. 神经网络的利用率

当一个CNN网络做forward时,对于硬件资源的利用情况,称之为利用率。

如何计算利用率?
  •   计算网络的计算量,通常是乘累加的次数
  •   测量网络运行耗时
  •   乘累加次数除以耗时, 计算该网络的GFLOPS
  •   用计算的网络GFLOPS除以硬件资源的理论GFLOPS,即利用率

2. GFLOPS

全称:float operations per second,每秒可做浮点操作的数量。用来衡量硬件性能,等价于运算速度。该值越大,说明硬件性能越高,速度越快。量级通常在M(10e6),G(10e9),T(10e12)。例如:9.6 GFLOPS 表示每秒可做 9.6 G 次浮点操作。

FLOPs:全称是float operations,浮点运算次数,等价于运算量。可用来衡量网络/模型的复杂度。该值越大,表示该网络的计算复杂度越高。

3. 网络计算量

网络前向计算时,卷积运算占据耗时90%以上。因此重点关注下如何计算卷积的运算量。

为简化问题,以下讨论认为:卷积采用滑动窗口且,忽略非线性计算的开销。

有卷积层的参数包括:输入 feature map 的 Cin ,宽 Hin ,高 Win ,输出 feature map 的 Cout ,宽 Hout ,高 Wout ,卷积核的尺寸 K ,卷积核通道等于 Cin ,卷积核个数等于 Cout 。则该卷积核与feature map做卷积的运算量为:


其中的1表示偏置量。偏置值每个卷积核对应1个,共有 Cout 个。(wx+b)

将 FLOPS 除以 10e9 得到 GFLOPS。

参考
[1] 神经网络计算量FLOPs: https://blog.csdn.net/zhaoyin214/article/details/83616164
[2] print_model_parm_flops: https://blog.csdn.net/junmuzi/article/details/83109660

版权声明:本文为CSDN博主「鸟恋旧林XD」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/niaolianjiulin/article/details/84073573

最新文章