七招教你处理非平衡数据——避免得到一个“假”模型
demi 在 周四, 10/11/2018 - 11:32 提交
这篇博客主要介绍处理不平衡数据的技巧,那么什么是不平衡数据呢?比如说一位医生做了一个病例对照研究,数据集由病例10人和对照990人组成,建立好一个逻辑回归模型后,并对建立的模型进行内部验证,居然发现其正确率高达99%,然后把他兴奋坏了,觉得可以将该成果发表到顶级期刊上,从此走上人生巅峰。然而,我们可以发现,该模型不管怎么预测,都能得到正常的结果,所谓的99%的正确率,原来是建立在1000个人中10个病例都发现不了的基础上。从这个例子可以看出,当遇到不平衡数据时,以总体分类准确率为学习目标的传统分类算法会过多地关注多数类,从而使得少数类样本的分类性能下降。
介绍
不平衡数据广泛存在于各个领域,但在二分类问题中尤其常见,表现为其中的一个类别所占的比例远远高于另外的一个类。比如:银行欺诈检测、市场营销、网络入侵检测等领域。
这些领域中的数据集有哪些共同点呢?可以发现在这些领域中使用的数据通常不到1%,但一旦发生就是一件“有趣”的事件(例如使用信用卡的欺诈者的违规交易,用户点击广告或原本已损坏的服务器在扫描其网络)。然而,大多数机器学习算法对于不平衡数据集都不能很好地工作。
以下七种技术可以帮助我们训练分类器来检测异常类。