机器学习+天体物理:星辰图像的更高效处理方法
demi 在 周五, 10/26/2018 - 09:42 提交
大数据文摘出品 / 编译:罗然、云舟
为了应对宇宙数据即将出现的指数级增长趋势,天体物理学家也开始将目光投向机器学习。
Kevin Schawinski的问题
2007年,他在牛津大学担任天体物理学家,努力回顾了斯隆数字巡天计划中超过900,000个星系七年中有价值的照片。他花了几天时间翻来覆去观察这些图像,并记录下了一个星系是螺旋形还是椭圆形的,以及它的旋转方式。
技术的进步加快了科学家收集信息的能力,但科学家们处理信息的速度却没有相应提升。 Schawinski和同事Chris Lintott花费了大量的时间来处理这个任务(即是上面提到处理星辰图像的任务),但并没有得到良好的效果,因此,他们决定必须找到更好的方法来解决这个问题。
Schawinski和Lintott通过一个名为Galaxy Zoo的公民科学项目从公众中招募志愿者来帮助他们分类网上的星辰图像,并向多名志愿者展示相同的图像以便让他们能够检查彼此的工作。最终,超过10万人参与并完成了这一项任务,如果靠他们自己的话,这项任务可能需要数年时间才能完成,但通过这种方式不到6个月就完成了。
公民科学家继续为图像分类任务做出贡献。但技术也在不断发展。