demi的博客

什么是离屏渲染?什么情况下会触发?该如何应对?

离屏渲染就是在当前屏幕缓冲区以外,新开辟一个缓冲区进行操作。

离屏渲染出发的场景有以下:
  •   圆角 (maskToBounds并用才会触发)
  •   图层蒙版
  •   阴影
  •   光栅化

为什么要有离屏渲染?

大家高中物理应该学过显示器是如何显示图像的:需要显示的图像经过CRT电子枪以极快的速度一行一行的扫描,扫描出来就呈现了一帧画面,随后电子枪又会回到初始位置循环扫描,形成了我们看到的图片或视频。

为了让显示器的显示跟视频控制器同步,当电子枪新扫描一行的时候,准备扫描的时发送一个水平同步信号(HSync信号),显示器的刷新频率就是HSync信号产生的频率。然后CPU计算好frame等属性,将计算好的内容交给GPU去渲染,GPU渲染好之后就会放入帧缓冲区。然后视频控制器会按照HSync信号逐行读取帧缓冲区的数据,经过可能的数模转换传递给显示器,就显示出来了。具体的大家自行查找资料或询问相关专业人士,这里只参考网上资料做一个简单的描述。

Unity 2019.1 Alpha新功能:增量式垃圾回收

我们为Unity 2019.1a10中加入了实验性新功能:Incremental Garbage Collection增量式垃圾回收。本文将介绍增量式垃圾回收功能,如何启用以及未来开发计划。

Unity 2019.1 Alpha新功能:增量式垃圾回收

为什么使用增量式垃圾回收

C#语言使用托管内存和自动垃圾回收,这意味着它使用自动化方法跟踪内存中的对象,然后释放不再使用对象的内存。

这种做法的优点是,开发者不必手动跟踪释放不需要的内存,因为垃圾回收器会自动执行此操作,这样会使开发者的工作更轻松,同时避免出现潜在Bug。缺点是垃圾回收器需要一些时间完成工作,而开发者或许不希望将特定时间用于此处。

人工神经网络真的像神经元一样工作吗?

来源:Medium/编译:weakish

编者按:Google产品经理Yariv Adan讨论了困惑很多人的问题:人工神经网络和人类大脑中的神经网络到底有多像?

人工神经网络和机器学习已经成为大众媒体的热门主题。智能机器这一想法勾起了很多人的想象,而且人们特别喜欢把它和人类放一起比较。特别是有一个关于人工智能的底层机制的基础问题经常出现——这些人工神经网络的工作方式真的和我们大脑中的神经元相似吗?

Tl;Dr

不。尽管从高层概念上说,ANN(人工神经网络)受到了大脑中的神经元和神经网络的启发,但这些概念的ML实现和大脑的工作方式大有径庭。不仅如此,随着这些年来ML领域的进展,新的复杂想法和技术的提出(RNN、GAN等)——这一联系进一步削弱了。

关键相似点

前馈全连接网络的高层架构和一般原则体现了人工神经网络和大脑中的神经网络的相似性。

从高层看,大脑的神经元由三部分组成:

最可怕的八种黑客手段,网络攻击真是无孔不入!

信息技术的应用以及互联网的普及,给我们的生活带来智能和便利的同时,也带来了风险与挑战。网络安全成为社会普遍关心的问题,无论企业还是个人,其实我们每时每刻都将信息和隐私暴露于危险之中。

日常生活中,手机、电脑、平板电脑或者其他电子产品在连接网络的时候,都非常容易受到网络攻击。黑客防不胜防,攻击的来源很可能是我们平时最容接触到的事物,让人难以防备。

下面就给大家盘点几个黑客常见的攻击手段。真是看得小编毛骨悚然啊!

1. 通过声音监控手机

2017年3月,美国密歇根大学和南卡罗来纳大学的研究人员发现可以利用声波入侵智能手机。研究人员发现,用特定频率的声波,可以让手机上的加速度计(一种传感器)产生共振,让它收到错误的信息,从而操控手机系统。韩国研究人员就曾经用相似的方法入侵无人机。

2. 发送传真即可入侵网络

尽管传真机已经没有那样流行了,并且传真机都已经设计成打印传真一体机,与办公网络相连接。但目前全球还有3亿个传真号码及4500万在用的传真机,在某些商业领域,传真仍然很流行。

想知道哪些技术有潜力颠覆未来?看这篇文章就够了

编者按:未来会怎样?没人知道,但是人人都可以设想。从AI、区块链、无人机,到AR/VR、无人车,乃至于物联网、微芯片、纳米机器人、CRISPR,以及智能微尘、数字孪生等,AI专家Adrien Book汇编了各种有可能成为下一个大事物的颠覆性技术,把它们分成无聊的意料之中、还算过得去、非常令人兴奋以及很晦涩但非常令人兴奋这四类,不妨看看谁最有可能率先取得突破吧。

作为一个稍纵即逝的概念,技术被记者、创业者和投资者无休止地关注着,希望靠留意和投资下一个大事物而赚大钱。以至于在这个过程中有时候他们会失去理智,弄出一些非常愚蠢的东西。这群快乐的预言者往往看不到以史为鉴的讽刺性。在一个创新和改变是取得进步的命脉的领域过于依赖过去的数据作为未来情况的信号。

但是读者对此依然买账,因为我们作为人喜欢那种可预测以及清晰的叙述的感觉。因此为了让大家达成一些共识,以下是我对未来科技的一些预测,其中既有以及被讨论得烂大街的无聊东西,也有那些似乎很怪异或者不大可能的东西,对于后者我反而愿意投钱。

无聊的意料之中的东西

AI/机器学习/深度学习

简述汽车发展史

本文简述了汽车发展史,包括汽车萌芽期、成型期、中国汽车工业简史、汽车发展浪潮、无人驾驶兴起与发展以及智能汽车的概述和智能汽车产业链。

世界汽车发展简史

汽车萌芽期

——蒸汽汽车的起因

1478年,意大利科学家、发明家列奥纳多·迪·皮耶罗·达·芬奇(Leonardo di ser Piero da Vinci)第一次提出了具有自推进功能的汽车设计。
1765年,詹姆斯·瓦特(James Watt)改进了蒸汽机设计,制造了第一台有实用价值的蒸汽机,推动了机械工业社会的发展。
1769年,法国工程师尼克拉斯·库纽(NicholasCugnot)在巴黎制造出世界上第一辆整齐驱动的三轮车。

汽车成型期(1885-1913)

——内燃机—发动机发展-底盘发展-材料发展

快速了解深度学习的工作原理

人工智能(AI)和机器学习(ML)是目前最热门的话题。

术语“AI”每天无处不在。经常听到有抱负的开发者说他们想要学习人工智能。还听到高管们说他们希望在他们的服务中实施AI。但很多时候,很多人都不明白AI是什么。

阅读完本文后,您将了解AI和ML的基础知识。更重要的是,您将了解最受欢迎的ML类型深度学习是如何工作的。

背景

了解深度学习如何运作的第一步是掌握重要术语之间的差异。

人工智能与机器学习

人工智能是人类智能在计算机中的复制。

当AI研究首次开始时,研究人员正试图复制人类智能以执行特定任务 - 比如玩游戏。

他们介绍了计算机需要尊重的大量规则。计算机有一个特定的可能操作列表,并根据这些规则做出决策。

机器学习是指机器使用大型数据集而不是硬编码规则进行学习的能力。

ML允许计算机自己学习。这种类型的学习利用了现代计算机的处理能力,可以轻松处理大型数据集。

监督学习与无监督学习

进阶深度学习?这里有9个给程序员的建议

俗话说得好,人往高处走。

在当前人工智能火得一塌糊涂的时候,很多程序员的心思也开始活络起来了。

“要不要转行做人工智能?”

想必是很多程序员心中都有过的念头。

到底该怎么转呢?很多人查了资料之后,一脸懵逼:一边要熟练掌握线性代数、矩阵计算,一边要搞概率论,还要去研究各种库与框架等等。

实在是不知道该从何开始,就拖延了下去,然后很是焦虑。

现在,你不用焦虑了。

国外一个开发者分享了自己的学习过程,并结合自己的经历,给出了9个建议。

这名开发者名叫Alexey Gaziev,是一家社交媒体管理创业公司的CTO,原来是一名Ruby开发者,后来自己学习深度学习。

在开始之前,我们先跟着Alexey澄清一下相关的概念:机器学习是实现人工智能的一组工具,深度学习是机器学习的一个特定子集。

好了,下面正式开始。

1、不要焦虑

可能你不太喜欢数学。就我个人而言,自从八年前毕业后,在开始学习深度学习之前,都没有再碰过数学教科书了。

但在你想要转行做人工智能之前,用谷歌进行一些简单的搜索并与周围比较喜欢数学的人交谈后,你会形成这样一个认知:

机器学习算法综述

近些年来,随着大数据、云计算、移动互联网、人工智能技术的兴起,“机器学习”成为了行业内炙手可热的一个名词。从通信互联网领域的专家,到各式各样的企业,甚至到普通的老百姓,都对“机器学习”技术略知一二。那么,机器学习到底是什么,它与我们常见的“人工智能”、“神经网络”、“数据挖掘“等相似概念都有什么关系?机器学习有那些基本分支、基本方法?在本文中,我们将用最简单易懂的语言解释这些问题。

问题一:“机器学习”和“人工智能”的关系是什么?

随着“机器学习”火起来的还有一个词语,即“人工智能”。每个人都肯定还记得不久以前的AlaphGo,随着机器打败围棋顶级高手李世石,人们也不得不感叹:“人工智能”时代真正到来了。

那么,“机器学习”和“人工智能”的关系到底是什么尼?其实,“人工智能”是一个很大的学科领域,里面包含很多子领域,如“机器学习”,“数据挖掘”,“模式识别”,“自然语言处理”等。这些子领域可能有交叉,但侧重点往往不同。比如”机器学习“就比较侧重于算法方面。总的来说,“人工智能”是一个学科领域,是我们研究的最终目的,而”机器学习“是这个领域中比较核心的,比较重要的,侧重于算法的一门学科,可以说,“人工智能”和“机器学习”是包含与被包含的关系。