demi的博客

梯度消失和梯度爆炸问题详解

反向传播(用于优化神网参数):根据损失函数计算的误差通过反向传播的方式,指导深度网络参数的更新优化。采取反向传播的原因:首先,深层网络由许多线性层和非线性层堆叠而来,每一层非线性层都可以视为是一个非线性函数 f(x) (非线性来自于非线性激活函数),因此整个深度网络可以视为是一个复合的非线性多元函数。

开发者谈切入游戏开发市场的7个选择视角

根据Newzoo的数据,手游行业预计会在2021年之前突破1000亿美元里程碑,实现十年两位数增长。去年,它占据了全球游戏市场50%以上的份额。手游成为了人人都想分一杯羹的热门产业,独立开发者和发行商梦想着自己能创造出新的现象级产品。

几种梯度下降方法对比

我们在训练神经网络模型时,最常用的就是梯度下降,这篇博客主要介绍下几种梯度下降的变种(mini-batch gradient descent和stochastic gradient descent),这里主要介绍Mini-batch gradient descent和stochastic gradient descent(SGD)以及对比下Batch gradient descent、mini-batch gradient descent和stochastic gradient descent的效果。

无线网络是否会扼杀有线网络?

尽管无线网络占据了所有的新闻头条,但有线网络仍然可以继续可靠地完成工作。尽管它们可靠且相对无处不在,不过,一些人还是预见到了有线网络的消失。无线技术和服务的不断扩展是否标志着有线网络的终结?物联网、即将推出的5G以及更快Wi-Fi的增长是否预示着铜缆的最终消失?

纹理图像分析的基本方法简述

纹理是物体表面固有的一种特性,所以图像中的区域常体现出纹理性质。纹理可以认为是灰度(颜色)在空间以一定的形式变化而产生的团(模式)。纹理与尺度有密切的关系,一般仅在一定的尺度上可以观察到,对纹理的分析需要在恰当的尺度上进行。纹理还具有区域性质的特点,通常被看做对局部区域中像素之间关系的一种度量,对于单个像素来说讨论纹理是没有意义的。