一定要在线性空间(Linear Space)中做光照计算
demi 在 周二, 09/17/2019 - 16:47 提交
啥是Gamma Correction?什么是在线性空间(Linear Space)中做光照计算?先介绍下啥是Gamma(别急,先看下去,这是解释线性空间的前置知识)。这词儿N多人听说过,而且也被各种滥用。这里只解释游戏即时渲染相关的概念。首先,就是老式CRT显示器的一个问题,给显示器输入的电压和输出的亮度不成线性关系
啥是Gamma Correction?什么是在线性空间(Linear Space)中做光照计算?先介绍下啥是Gamma(别急,先看下去,这是解释线性空间的前置知识)。这词儿N多人听说过,而且也被各种滥用。这里只解释游戏即时渲染相关的概念。首先,就是老式CRT显示器的一个问题,给显示器输入的电压和输出的亮度不成线性关系
SGD(Stochastic Gradient Descent)就是最常见的随机梯度下降。向着参数的梯度的负方向改变(梯度方向是增加的方向)。相比于普通SGD,Momentum update在深度网络中收敛更好。
物联网的出现使人们的生活更加智能化,给人们带来了许许多多的便利。但每个硬币都有两面,便利的另一面也同样存在着挑战。
连续特征离散化的基本假设,是默认连续特征不同区间的取值对结果的贡献是不一样的。特征的连续值在不同的区间的重要性是不一样的,所以希望连续特征在不同的区间有不同的权重,实现的方法就是对特征进行划分区间,每个区间为一个新的特征。常用做法,就是先对特征进行排序,然后再按照等频离散化为N个区间。
一个人工智能项目中,最重要的究竟是数据、算法还是处理过程?有人认为,数据就宛如人工智能的汽油,重点应该是干净的数据、数据科学和对数据含义的深刻理解。有些人说,没有来龙去脉的数据是没有意义的,这些数据的来龙去脉可以是其他数据、模型/算法或处理流程。让我们以一种简洁的方式探究这些人工智能的要素,以发现每种视角的优点。
采用 Gamma 校正法对输入图像进行颜色空间的标准化(归一化);目的是调节图像的对比度,降低图像局部的阴影和光照变化所造成的影响,同时可以抑制噪音的干扰......
过拟合是指学习时选择的模型所包含的参数过多,以至于出现这一模型对已知数据预测的很好,但对未知数据预测的很差的现象。过拟合的是由数据和模型两方面原因共同造成的,最直接防止过拟合的方法是无限增大训练集的大小,让训练集样本与真实数据分布尽可能接近,但这么做实在是不太现实......
本文概述:分析Unity中几个2D物理关节组件的基本功能、使用方法、运用场景等。
开发环境:Unity2019.3.0a2 / VS2017
机器学习算法一般都会有训练和测试的过程,而且算法在不同训练集上学得的模型,测试的结果也很可能不同。一般来说,算法的方差衡量了训练集的变动导致的模型性能的变化,即多次训练的模型之间的性能差异性。偏差则是度量算法的期望输出与真实标记的区别,表达了学习算法对数据的拟合能力。而噪声则表示数据的真实标记与数据在数据集上标记的区别,表明算法在当前任务上能达到的测试误差的下界。
硬件加速,简而言之,硬件加速就是利用硬件模块来替代软件算法以充分利用硬件所固有的快速特性。那么稍加变化就可以知道,GPU硬件加速就是指利用GPU强大的硬件图形处理能力,来代替CPU原本使用的软件模拟图形处理算法,从而充分利用GPU的特长为系统服务。