深度学习与图像去噪总结
demi 在 周二, 10/30/2018 - 11:42 提交
由于深度学习,特别是卷积神经网络(CNN)在图像识别等领域取得了较好的成果,近年来,基于深度学习的图像去噪方法也被提出并得到了发展。2008年,Viren Jain等提出用CNN处理自然图像的去噪问题[21],得到了与常规方法(如小波变换和马尔可夫随机场)相近或更优的结果。并说明了特定形式的CNN可以被视为图像去噪的马尔可夫模型推断的结果的一种近似,但是神经网络模型可以避免了马尔可夫模型在概率学习和推断过程中的计算困难,从而降低了计算的复杂度。在训练神经网络的过程中为了更加快速和准确的收敛,采取了逐层训练的方法。
该方法网络结构如下图所示: