图像处理基础(6):锐化空间滤波器
demi 在 周一, 09/10/2018 - 09:25 提交
前面介绍的几种滤波器都属于平滑滤波器(低通滤波器),用来平滑图像和抑制噪声的;而锐化空间滤波器恰恰相反,主要用来增强图像的突变信息,图像的细节和边缘信息。平滑滤波器主要是使用邻域的均值(或者中值)来代替模板中心的像素,消弱和邻域间的差别,以达到平滑图像和抑制噪声的目的;相反,锐化滤波器则使用邻域的微分作为算子,增大邻域间像素的差值,使图像的突变部分变的更加明显。
本位主要介绍了一下几点内容:
• 图像的一阶微分和二阶微分的性质
• 几种常见的一阶微分算子
• 二阶微分算子 - Laplace 拉普拉斯算子
• 一阶微分算子和二阶微分算子得到边缘的对比
一阶微分和二阶微分的性质
既然是基于一阶微分和二阶微分的锐化空间滤波器,那么首先就要了解下一阶和二阶微分的性质。