强人工智能基本问题:全局控制与自组织
demi 在 周一, 10/15/2018 - 11:40 提交
大脑是非常复杂的,研究强人工智能需要参考大脑的结构和算法,来理解并创造智能。人脑算法、结构的秘密都隐藏在DNA和人存在的世界中。从现在的哲学和科学的认知来看,可认为人脑是自组织的,没有明确的全局目标函数。而自组织是大脑非常重要的一个特点。自组织最大的好处是人工介入少,这是对智力生产力的解放,代表了下一代生产力。
当前的人工神经网络算法以全局控制为主流。虽然有一部分自组织的算法,但是其应用范围非常小。所谓全局控制,即需要比人工神经网络更高级的观察者来控制神经网络,比如设定神经网络的目标,选择其算法,设定参数等。而自组织系统则最小化对系统的初始设定,把其余部分交给神经网络系统自己去调整。
在全局控制的神经网络系统中,全局控制的部分包括:
1)神经网络算法和数据结构。现在已经出现了很多神经网络算法,它们有各自的优势和其擅长解决的问题。在解决实际问题中需要根据经验,或各种方案都试验一下,来看看哪种算法给出的结果更好,并决定所使用的算法。一般在算法决定后,数据结构也随之决定了。
2)神经网络规模。在通常的机器学习算法中,都在设计模型的过程中决定每个模型的规模。规模太大运算复杂度太高,规模太小则无法得出足够精确的结果。