5 种最流行的深度学习架构
demi 在 周四, 11/08/2018 - 15:23 提交
连接主义体系结构已存在 70 多年,但新的架构和图形处理单元 (GPU) 将它们推到了人工智能的前沿。深度学习架构是最近 20 年内诞生的,它显著增加了神经网络可以解决的问题的数量和类型。本文将介绍 5 种最流行的深度学习架构:递归神经网络 (RNN)、长短期记忆 (LSTM)/门控递归单元 (GRU)、卷积神经网络 (CNN)、深度信念网络 (DBN) 和深度叠加网络 (DSN),然后探讨用于深度学习的开源软件选项。
深度学习不是单个方法,而是一类可用来解决广泛问题的算法和拓扑结构。深度学习显然已不是新概念,但深度分层神经网络和 GPU 的结合使用加速了它们的执行,深度学习正在突飞猛进地发展。大数据也助推了这一发展势头。因为深度学习依赖于监督学习算法(这些算法使用示例数据训练神经网络并根据成功水平给予奖惩),所以数据越多,构建这些深度学习结构的效果就越好。
深度学习与 GPU 的兴起