卷积神经网络CNN—— BN(Batch Normalization) 原理与使用过程详解
demi 在 周二, 09/25/2018 - 09:23 提交
前言
Batch Normalization是由google提出的一种训练优化方法。参考论文:Batch Normalization Accelerating Deep Network Training by Reducing Internal Covariate Shift
个人觉得BN层的作用是加快网络学习速率,论文中提及其它的优点都是这个优点的副产品。
网上对BN解释详细的不多,大多从原理上解释,没有说出实际使用的过程,这里从what, why, how三个角度去解释BN。
What is BN
Normalization是数据标准化(归一化,规范化),Batch 可以理解为批量,加起来就是批量标准化。
先说Batch是怎么确定的。在CNN中,Batch就是训练网络所设定的图片数量batch_size。
Normalization过程,引用论文中的解释: