demi的博客

关于人工智能监控的影响,你应该知道的三件事

据IDC预测,全球数据圈将从2018年的33ZB增长到2025年的175ZB。数据的真正价值在于,决策者能够从相关数据中提取洞察与见解,并采取相关行动。人工智能(AI)和机器学习在数据分析中的应用预计将大幅增加。事实上,IDC表示,到2025年,认知系统所触及的分析数据量将增长100倍,高达1.4ZB。

数据预处理详解

由于当今数据的数量庞大且来自于各种不同类型的来源,因此出现数据异常的可能性不断增加。鉴于高质量数据可生成更好的模型和预测,数据预处理的重要性与日俱增,并且已经成为数据科学、机器学习、AI 管道中的基本步骤。在本文中,我们将探讨数据处理需求,并讨论用于完成此流程中每个步骤的不同方法。

深度学习—BN的理解(一)

机器学习领域有个很重要的假设:IID独立同分布假设,就是假设训练数据和测试数据是满足相同分布的,这是通过训练数据获得的模型能够在测试集获得好的效果的一个基本保障。那BatchNorm的作用是什么呢?BatchNorm就是在深度神经网络训练过程中使得每一层神经网络的输入保持相同分布的。

图像处理(1)频域滤波与空间域滤波比较

空间域滤波是在图像空间中借助模板对图像进行邻域操作,处理图像的每一个像素的取值都是根据模板对输入像素邻域内的像素值进行加权叠加得到的。空间域滤波是让图像在频域空间内某个范围的分量受到抑制,同时保证其他分量不变,从而改变图像的频率分布。空间域滤波是应用模板卷积对图像每一个像素进行局部处理。