编程语言那么多,最适合图像识别的是哪种呢?
1. Python
目前,Python被认为一种目前最流行的编程语言。其简单性和多功能性是许多程序员喜欢使用它的一些原因。尽管很简单,但Python是一种可以依赖于执行复杂任务的语言。它可用于创建图像处理和识别功能。
Python的普及使其资源非常丰富。它包含几个功能所需的库,其中包括图像识别。最强大和最有效的库之一是Scikit-Learn机器学习库。除了图像识别,这些库还可用于更智能的功能,如人脸识别和运动检测。
2. Matlab
Matlab是一种独立的编程语言,它有自己的框架和集成开发环境(IDE),具有更强大的工作空间。该编程语言提供了广泛的工具,你可以使用它们轻松处理更多技术编程任务。图像识别和面部处理是Matlab可以处理的一些任务。
Matlab提供了一系列用于矩阵计算的内置工具。必须注意的是,图像识别和矩阵计算是齐头并进的。Matlab中可用的一些工具可以执行复杂的图像处理任务,例如裁剪、旋转、掩蔽等。
还有一个专用的Matlab代码,用于调用和实现面部识别功能。这个代码使用AT&T数据库。因此,你应该在使用这个代码之前下载AT&T数据库。最先进的人脸识别应用程序是用Matlab编写的。
3. C / C ++ / C#
在C系列编程语言方面,你永远不会出错。它们功能强大,可以做任何事情,包括创建图像处理和识别功能。C系列编程语言提供了两种创建图像处理功能的选项。你可以选择从头开始对所有代码进行编码,从而手动编写代码。第二种选择是使用专为这些编程语言设计的现有库。这些库包括OpenGL、EmguCV、OpenCV等等。它们具有用于图像识别的智能图像处理功能。
4. Java
像C和C ++一样,永远不要低估Java编程语言的强大功能。这种语言足以执行复杂的功能。它可用于创建图像处理和图像识别的应用程序。
5. OpenCV工具
开源计算机视觉(OpenCV)是一种用于实时处理的高级工具。它也是一种跨平台工具,因此可以集成到任何编程语言中,以执行图像处理和识别功能。它可以与C、C ++、Java、Python和Android编程语言集成。
OpenCV提供无专利算法,你可以在没有任何法律限制的情况下使用。它可用于商业和学术目的。它有一个专门的脸部识别器类,你可以用它来试验图像识别功能的能力,没有任何麻烦。该课程附有一个信息丰富的文档,将向你展示如何实现图像识别功能。总体而言,无论使用何种编程语言,OpenCV都是图像识别的首选工具。
本文转自:小白学视觉,转载此文目的在于传递更多信息,版权归原作者所有。如不支持转载,请联系小编demi@eetrend.com删除。