LSTM

【视频】LSTM在Imagination神经网络加速器上的运行

Mozilla的DeepSpeech是一个开源的语音转文本引擎,其训练模型是基于百度深度语言研究论文的机器学习。我们将概述如何运行该模型的0.5.1版本,通过在Imagination神经网络加速器(NNA)上加速静态LSTM网络,为汽车应用创建语音助手原型。

简单理解LSTM神经网络

在传统神经网络中,模型不会关注上一时刻的处理会有什么信息可以用于下一时刻,每一次都只会关注当前时刻的处理。举个例子来说,我们想对一部影片中每一刻出现的事件进行分类,如果我们知道电影前面的事件信息,那么对当前时刻事件的分类就会非常容易。

机器学习:深入理解LSTM网络 (二)

之前我们介绍了RNN 网络结构以及其所遇到的问题 ,RNN 结构对于关联度太长的时序问题可能无法处理,简单来说,RNN对于太久远的信息不能有效地储存,为了解决这个问题,有人提出了LSTM的网络结构,LSTM 网络结构最早是由 Hochreiter & Schmidhuber 在1997 年提出的,随着后来研究者的不断改进,LSTM网络在很多问题上都有非常好的表现,并且得到广泛的关注与应用。

LSTM 网络

LSTM 结构的一个优势在于可以很好的解决 “long-term dependency” 的问题,”长期记忆”是LSTM结构与生俱来的特性,而不需要刻意地去学习。

所有的RNN结构都是有一个不断重复的模块,在标准的RNN结构中,这个不断重复的模块是一个单层的tanh , 如下图所示:

机器学习:深入理解LSTM网络 (一)

Long Short Term Memory Networks (LSTMs) 最近获得越来越多的关注,与传统的前向神经网络 (feedforward network)不同,LSTM 可以对之前的输入有选择的记忆,从而有助于判断当前的输入, LSTM的这一特点在处理时序相关的输入时,有着很大的优势。

LSTM调参经验

在开始调参之前,需要确定方向,所谓方向就是确定了之后,在调参过程中不再更改。1、根据任务需求,结合数据,确定网络结构。例如对于RNN而言,你的数据是变长还是非变长;输入输出对应关系是many2one还是many2many等等

LSTM 与 GRU 原理讲解

长短期记忆((Long short-term memory)最早是1997年由Hochreiter 和 Schmidhuber在论文《LONG SHORT-TERM MEMORY》中提出的。在神经网络发展的过程中,几乎所有关于LSTM的文章中对于LSTM的结构都会做出一些变动,也称为LSTM的变体。其中变动较大的是门控循环单元(Gated Recurrent Units),也就是较为流行的GRU。