数字图像处理

数字图像处理(二)——边缘检测

边缘是图像中灰度发生急剧变化的区域边界,图像灰度的变化情况可以用灰度分布的梯度来表示,数字图像中求导是利用差分近似微分来进行的,实际上常用空域微分算子通过卷积来完成。

1 一阶导数算子

1.1 Roberts

Roberts算子是一种斜向偏差分的梯度计算方法,梯度的大小代表边缘的强度,梯度的方向与边缘的走向垂直。Roberts操作实际上是求旋转45度两个方向上微分值的和。Roberts算子定位精度高,在水平和垂直方向的效果好,但对噪声敏感。两个卷积核Gx、Gy分别为:

“”

采用1范数衡量梯度的幅度为:

“”

1.2 Sobel

数字图像处理 ——形态学处理

1 形态学基本操作

1.1 膨胀

膨胀:就是求局部最大值的操作。

按数学方面来说,膨胀或者腐蚀操作就是将图像(或图像的一部分区域,我们称之为A)与核(我们称之为B)进行卷积。

核可以是任何的形状和大小,它拥有一个单独定义出来的参考点,我们称其为锚点(anchorpoint)。多数情况下,核是一个小的中间带有参考点和实心正方形或者圆盘,其实,我们可以把核视为模板或者掩码。

膨胀是求局部最大值的操作:核B与图形卷积,即计算核B覆盖的区域的像素点的最大值,并把这个最大值赋值给参考点指定的像素。这样就会使图像中的高亮区域逐渐增长。

如下图所示,这就是膨胀操作的初衷。

数字图像处理 ——形态学处理

膨胀的数学表达式:

彻底理解数字图像处理中的卷积——以Sobel算子为例

卷积在信号处理领域有极其广泛的应用,也有严格的物理和数学定义。本文只讨论卷积在数字图像处理中的应用。

在数字图像处理中,有一种基本的处理方法:线性滤波。待处理的平面数字图像可被看做一个大矩阵,图像的每个像素对应着矩阵的每个元素,假设我们平面的分辨率是 1024 * 768,那么对应的大矩阵的行数= 1024,列数=768 。

用于滤波的是一个滤波器小矩阵(也叫卷积核),滤波器小矩阵一般是个方阵,也就是行数和列数相同,比如常见的用于边缘检测的 Sobel 算子 就是两个 3*3 的小矩阵.

进行滤波就是对于大矩阵中的每个像素,计算它周围像素和滤波器矩阵对应位置元素的乘积,然后把结果相加到一起,最终得到的值就作为该像素的新值,这样就完成了一次滤波。

上面的处理过程可以参考这个示意图:

图像卷积计算示意图:

彻底理解数字图像处理中的卷积——以Sobel算子为例

对图像大矩阵和滤波小矩阵对应位置元素相乘再求和的操作就叫卷积(Convolution)或协相关(Correlation).

数字图像基础之图像取样和量化

1. 取样和量化的基本概念(Concepts)

获取图像的目标是从感知的数据中产生数字图像,但是传感器的输出是连续的电压波形,因此需要把连续的感知数据转换为数字形式。这一过程由图像的取样与量化来完成。 数字化坐标值称为取样;数字化幅度值称为量化。

图像采样

◆ 在取样时,若横向的像素数(列数)为M ,纵向的像素数(行数)为N,则图像总像素数为M*N个像素。

◆ 一般来说,采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时出现马赛克效应;采样间隔越小,所得图像像素数越多,空间分辨率高,图像质量好,但数据量大。

数字图像基础之图像取样和量化

图像的量化

数字图像基础之图像的感知和获取

人类感知只限于电磁波谱的视觉波段,成像机器则可以覆盖几乎全部电磁波谱。各类图像都是由“照射”源和形成图像的“场景”元素对光能的反射或吸收相结合而产生的。

数字图像基础之图像的感知和获取

一副平面图像可以用二维亮度函数来表示,当一副图像从物理过程产生时,它的值正比于物理源的辐射能量,因此,f(x,y)一定是非零和有限的,即:

数字图像基础之图像的感知和获取 ;

数字图像处理概述

1. 数字图像处理概念

视觉是人类最高级的感知器官,所以,毫无疑问图像在人类感知中扮演着最重要的角色。然而,人类感知只限于电磁波谱的视觉波段,成像机器则可覆盖几乎全部电磁波谱,从伽马射线到无线电波。它们可以对非人类习惯的那些图像源进行加工,这些图像源包括超声波、电子显微镜及计算机产生的图像。

数字图像处理(Digital Image Processing)是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。数字图像处理的产生和迅速发展主要受三个因素的影响:一是计算机的发展;二是数学的发展(特别是离散数学理论的创立和完善);三是广泛的军事、工业和医学等方面的应用需求的增长。

一幅图像可定义为一个二维函数f(x,y),这里x和y是空间坐标,而在任何一对空间坐标(x,y)上的幅值f称为该点图像的强度或灰度。当x,y和幅值f为有限的、离散的数值时,称该图像为数字图像。

图像强度(image intensity)、灰度

数字图像处理中的基本图像类型

数字图像处理是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。在计算机中,按照颜色和灰度的多少可以将图像分为二值图像、灰度图像、索引图像和真彩色RGB图像四种基本类型。目前,大多数图像处理软件都支持这四种类型的图像。

(1) 二值图像:

一幅二值图像的二维矩阵仅由0、1两个值构成,“0”代表黑色,“1”代白色。由于每一像素(矩阵中每一元素)取值仅有0、1两种可能,所以计算机中二值图像的数据类型通常为1个二进制位。二值图像通常用于文字、线条图的扫描识别(OCR)和掩膜图像的存储。

2) 灰度图像:

灰度图像矩阵元素的取值范围通常为[0,255]。因此其数据类型一般为8位无符号整数的(int8),这就是人们经常提到的256灰度图像。“0”表示纯黑色,“255”表示纯白色,中间的数字从小到大表示由黑到白的过渡色。在某些软件中,灰度图像也可以用双精度数据类型(double)表示,像素的值域为[0,1],0代表黑色,1代表白色,0到1之间的小数表示不同的灰度等级。二值图像可以看成是灰度图像的一个特例。

数字图像处理的基本原理和常用方法

数字图像处理是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。图像处理最早出现于 20 世纪 50 年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。数字图像处理作为一门学科大约形成于 20 世纪 60 年代初期。早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。

数字图像处理常用方法:

1 )图像变换:由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理(如傅立叶变换可在频域中进行数字滤波处理)。目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用。

计算机视觉、图形学和图像处理,三者有什么联系?

先说区别

1. Computer Graphics,简称 CG 。输入的是对虚拟场景的描述,通常为多边形数组,而每个多边形由三个顶点组成,每个顶点包括三维坐标、贴图坐标、rgb 颜色等。输出的是图像,即二维像素数组。

[xyz xyz xyz ... xyz] -> 图片

2. Computer Vision,简称 CV。输入的是图像或图像序列,通常来自相机、摄像头或视频文件。输出的是对于图像序列对应的真实世界的理解,比如检测人脸、识别车牌、区分猫狗。

图片 -> dog or cat?
图片 -> [xyz xyz xyz ... xyz]

3. Digital Image Processing,简称 DIP。输入的是图像,输出的也是图像。Photoshop 中对一副图像应用滤镜就是典型的一种图像处理。常见操作有模糊、灰度化、增强对比度等。

图片 -> ps后的图片

再说联系

1. CG 中也会用到 DIP,现今的三维游戏为了增加表现力都会叠加全屏的后期特效,原理就是 DIP,只是将计算量放在了显卡端。通常的做法是绘制一个全屏的矩形,在 Pixel Shader 中进行图像处理。

数字图像处理:各种变换滤波和噪声的类型和用途总结

一、基本的灰度变换函数
1.1.图像反转
适用场景:增强嵌入在一幅图像的暗区域中的白色或灰色细节,特别是当黑色的面积在尺寸上占主导地位的时候。

1.2.对数变换(反对数变换与其相反)
过程:将输入中范围较窄的低灰度值映射为输出中较宽范围的灰度值。
用处:用来扩展图像中暗像素的值,同时压缩更高灰度级的值。
特征:压缩像素值变化较大的图像的动态范围。
举例:处理傅里叶频谱,频谱中的低值往往观察不到,对数变换之后细节更加丰富。

1.3.幂律变换(又名:伽马变换)
过程:将窄范围的暗色输入值映射为较宽范围的输出值。
用处:伽马校正可以校正幂律响应现象,常用于在计算机屏幕上精确地显示图像,可进行对比度和可辨细节的加强。

1.4.分段线性变换函数
缺点:技术说明需要用户输入。
优点:形式可以是任意复杂的。
1.4.1.对比度拉伸:扩展图像的动态范围。
1.4.2.灰度级分层:可以产生二值图像,研究造影剂的流动。
1.4.3.比特平面分层:原图像中任意一个像素的值,都可以类似的由这些比特平面对应的二进制像素值来重建,可用于压缩图片。

1.5.直方图处理
1.5.1直方图均衡:增强对比度,补偿图像在视觉上难以区分灰度级的差别。作为自适应对比度增强工具,功能强大。

同步内容
--电子创新网--
粤ICP备12070055号