人工智能

11个技术领袖告诉你的AI真相

人工智能是一个深邃世界,那些最优秀的人工智能实践像一个漫无边际的海洋那样浩瀚,如何让AI有助于你的生意?AI又是如何影响着消费者们?这样的疑问绵延不绝。事实就是,在现阶段,有些AI太复杂,企业没有必要考虑要不要将其引入到自己的品牌中来,尤其是对那些当下的和短期需求来说。然而,随着关于AI和自动化在媒体行业中不断被讨论,压力是越来越大的,但那些都是噪音罢了。为了终结这种切实存在的噪音,我们收集11位技术领导者的洞见,他们将对我们应该关注何处(以及为什么要关注)发表更深层的看法。

AI不总是正确的解决方案

关于AI是否是正确的解决方案,企业需要谨慎地、有条不紊地权衡他们的选择,如果它是正确的解决方案,那就需要有针对性地规划其路线图,以确保其产品和消费者都能长存。

Jason VandeBoom是ActiveCampaign的CEO和创始人,ActiveCampaign是一个为中小企业服务的营销自动化和CRM平台提供商。VandeBoom认为:

人工智能、机器学习和深度学习的区别是什么?

我们周围的事物正变得越来越智能。

从汽车到智能手机,到数字助理,甚至包括机器人。我们不只是在讲每天层出不穷的、突破性的新功能。更重要的是,设备、计算机和机器都在聪明地执行任务。它们是如何做到的呢?通过人工智能,也就是AI。

“人工智能”一词最早由认知科学家约翰·麦卡锡在研究中提出,他写到,“这项研究基于一种推测,即任何学习行为或其它智力特征,在原则上都可以被精确地描述,从而可以制造出一台机器来模拟它。”这种描述在今天仍然适用,只是复杂性增加了一些。

人工智能、机器学习和深度学习的区别是什么?

你也许最近经常听到“人工智能”和另外几个词汇同时出现,特别是“机器学习”和“深度学习”。它们经常被互换使用,尽管它们存在关联,但其实并非同一事物。

这样说可能会让人感到困惑。我们通过一个经典的例子来解释人工智能、机器学习和深度学习之间的区别:比较苹果和橙子。

人工智能

人工智能入门必读:4大关键AI概念

人工智能(AI)正在肆虐世界,并创新的应用于所有行业。正如电影中所看到的,我们用了几年的时间用AI机器人替代了医生的部分工作,同时,AI也在帮助所有行业的专家更快地诊断和解决问题。大多数人都关注于AI的结果,对于想了解AI开发的程序员来说,有四个关键概念一定要理解:分类,分析,机器学习和协同过滤,这四个支柱也是分析过程中的一个步骤。

分类涉及创建特定于问题领域的指标(例如财务,网络),分析涉及确定哪些数据与解决问题最相关。机器学习涉及异常检测,聚类,深度学习和线性回归。协同过滤涉及查找大型数据集中的模式。

分类

AI需要大量与要解决的问题相关的数据。构建AI解决方案的第一步是创建所谓的“设计意图度量”,用于对问题进行分类。无论用户正在尝试构建可以播放音乐的系统、帮助医生诊断癌症的系统,还是帮助IT管理员诊断无线问题,用户都需要定义允许将问题分解成较小部分的关键指标。例如,在无线网络中,关键指标是用户连接时间,吞吐量,覆盖率和漫游。在癌症诊断中,关键指标是白细胞计数,种族背景和X射线扫描。

分析

零售的未来:要么靠人工智能,要么变人工智障

编者按:当前科技发展日新月异,消费者水平不断提高,无论是实体店还是电商,都需要不断提高自身水平以满足消费者需求。本文作者 Kerry Liu 是零售智能平台 Rubikloud 的 CEO,在文中,他认为,人工智能已是大势所趋,可以帮助公司将海量数据转化成有意义的信息,帮助公司适应市场的发展,在竞争中立于不败之地。

在今天的消费市场上,每家公司都需要成为一家科技公司,零售商也不例外。亚马逊、沃尔玛和阿里巴巴等商业巨头正竞相重新定义零售体验。他们不断证明,无论是实体店还是电商,能力都需要提升。问题是,许多零售商还没有采用必要的技术以提高竞争力。在科技初创公司领域,我听说许多流行语,但最近“人工智能”这个词似乎老在身边萦绕,不绝于耳。

根据美国市场协会的统计,今年零售行业的网上销售额将达到4590亿美元,零售业务将达3.6万亿美元。 随着亚马逊主导电子商务的发展,零售商需要时刻谨记实体体验的重要性。我认为,纯电子商务不再是万全之策。随着客户数据的不断扩大和积累,许多零售商面临着一个两难的境地——可获取的信息太多,将信息转化为有意义的数据的科技又太少。

人工智能处理海量数据

这时候就需要人工智能上场了。人工智能通过持续不断的技术学习,并随着经验的增加而改善。科技将数据与层层算法相结合,从而简化数据,不断构建知识根基。

让计算机拥有一双眼睛,人工智能科学家已经努力了半个世纪

最近斯坦福大学一篇论文《Deep neural networks are more accurate than humans at detecting sexual orientation from facial images》一出,舆论哗然,该论文研究指出,计算机算法可以从面相判断一个人的性取向,引发了对隐私、道德、伦理问题的争议。然而回过头去看,这原本是一个卷积神经网络应用的技术文章,在人工智能领域,它是图像识别和机器人视觉的核心部分。

图像识别技术,是人工智能道路上的一座高峰,如今你可以看到包括个人相册图片管理、刷脸解锁手机、刷脸上班打卡等广泛应用。你一定好奇,图像识别是什么?如何让机器理解一张图甚至一个动态的生物?背后又用到了哪些技术?

今天,我们就从源头挖一挖图像识别的概念、技术和应用。

什么是“图像识别”?

从概念来看,图像识别是指利用计算机对图像进行处理、分析和理解,以识别不同模式的目标和对像(人物、场景、位置、物体、动作等)的技术。

而图像识别算法一般采用机器学习方法,模拟人脑看图,随后计算机依靠大量的数据,理解图像,最后建立相关的标签和类别。整个识别过程的核心,就是神经网络,经过优胜劣汰,目前已经发展到卷积神经网络(CNN或ConvNets)。

人工智能在医疗产业的五大应用场景及典型案例

近年来,智能医疗在国内外的发展热度不断提升。有人提出,“尽管安防和智能投顾最为火热,但AI在医疗领域可能会率先落地。”一方面,图像识别、深度学习、神经网络等关键技术的突破带来了人工智能技术新一轮的发展。大大推动了以数据密集、知识密集、脑力劳动密集为特征的医疗产业与人工智能的深度融合。

另一方面,随着社会进步和人们健康意识的觉醒,人口老龄化问题的不断加剧,人们对于提升医疗技术、延长人类寿命、增强健康的需求也更加急迫。而实践中却存在着医疗资源分配不均,药物研制周期长、费用高,以及医务人员培养成本过高等问题。 对于医疗进步的现实需求极大地刺激了以人工智能技术推动医疗产业变革升级浪潮的兴起。

智能医疗的主要应用场景

从全球创业公司实践的情况来看,智能医疗的具体应用包括洞察与风险管理、医学研究、医学影像与诊断、生活方式管理与监督、精神健康、护理、急救室与医院管理、药物挖掘、虚拟助理、可穿戴设备以及其他。总结来看,目前人工智能技术在医疗领域的应用主要集中于以下五个领域:

(一)医疗机器人
机器人技术在医疗领域的应用并不少见,比如智能假肢、外骨骼和辅助设备等技术修复人类受损身体,医疗保健机器人辅助医护人员的工作等 。目前实践中的医疗机器人主要有两种:

未来即将“触脸可及”,人脸识别技术大揭秘!

今天,我们将从技术专家给出的流程图切入,对“你最像哪位明星?”这张小应用对比照背后的基本流程与算法做解析。

未来即将“触脸可及”,人脸识别技术大揭秘!
“你最像哪位明星?”对比照

未来即将“触脸可及”,人脸识别技术大揭秘!
图1:人脸技术的基本流程

如图 1 所示,用户在应用中输入一张图像(例如:特朗普的图像),人脸识别的基本流程如下:
• 通过人脸检测技术,找到输入图像中的人脸位置。
• 关键点定位技术,将人脸中的关键点位置找到,例如:眼睛、鼻子、嘴巴以及轮廓上的关键点。

人工智能有望助力精准医疗

随着计算机的不断发展,医学影像的精度、密度等数据信息量会越来越大,生物标本库和生物组学信息的数据也在快速增长,数据的存储甚至人工的智能判读成为重要问题。

精准医疗,就是要克服千人一方、万人一药的瓶颈问题,根据患者个体的遗传基因特征,量体裁衣式地制定具有个性化的治疗方案。然而,随着生物数据的爆炸式增长,更多的挑战出现在了计算技术领域。

“我们已经进入了一个医学数据大规模整合的时代,要参考基因组学、微生物组、环境、行为、临床检验等各种信息,这个整合就导致数据量出现指数级的增长。”中国国家罕见病注册系统执行总监弓孟春在2017人工智能计算大会上表示,现在精准医疗的知识体系已经超过医生个人承载的范围,知识更新的速度也超出了传统医学教育系统处理的能力。

而人工智能最大的优势就是其碾压性的计算能力,医疗若想更精准,急需人工智能前来救场。

“胖数据”待“瘦身”

“现在病人会拿着基因测序的报告问你,糖尿病会不会遗传给孩子、会不会很早就得眼底病变、会不会很快出现心血管病变、是不是应该用胰岛素、应该先吃什么药、运动会不会对我有效……”精准医疗普及的同时也给医生提出了很多难题,弓孟春就遇到过很多问题不断的病人,这些问题已经远远超出医生原来数据搜集的范围。

代码之外,我们能在多大程度上信任人工智能呢

关于人工智能(AI)这个相当过时的概念,最近引起了大量的讨论。人工智能充斥着我们的生活,涉及了无数的应用程序,从谷歌搜索,到Uber或Lyft打车软件,到机票价格,到智能助手Alexa。对一些人来说,人工智能是一种拯救,它会提高生活质量,同时在众多成熟的行业中注入创新元素。

然而,另一些人则发出了可怕的警告:我们很快就会完全被高超的机器智能所征服。人工智能是典型的软件主导,而软件是容易出现漏洞的。考虑到这一点,我们如何知道人工智能本身是足够可靠去完成工作的?或者更确切地说,我们对于人工智能的成果能够信任到什么程度?

盲目信任的风险

我们来讨论一下自动驾驶汽车。汽车自动驾驶系统的发展中,人工智能的元素发挥了很大的作用。现在制造出了大部分时间都遵守道路规则的车辆。这里有一个案例,一辆自动驾驶汽车在佛罗里达州侧面撞上一辆转弯的卡车,导致“司机”死亡。这起事故最终被归咎于“司机”的失误,因为自动控制装置被认为是在他们的设计范围内运行的。当时的躲避系统设计要求雷达和视觉系统的结果达成一致后做出闪避的动作。

人工智能和大数据的开发过程中需要注意这12点

人工智能是近年来科技发展的重要方向,在大数据时代,对数据采集、挖掘、应用的技术越来越受到瞩目。在人工智能和大数据的开发过程中,有哪些特别需要注意的要点?

人工智能领域的算法大师、华盛顿大学教授Pedro Domingos对此进行了深入思考。

在我们新近翻译的《智能Web算法》(第2版)中,对Pedro Domingos教授的观点进行了高度的概括,提炼出12个注意点,为行业开发实践提供了重要参考:

注意点1:你的数据未必可靠

在实际应用中,有很多各种各样的原因会导致你的数据是不可靠的。因此,当你将数据用于解决问题前,必须经常留心来检查数据是否值得信赖。如果基于糟糕的数据来挖掘,无论多么聪明的人也永远只会获得糟糕的结果。下面列举了一些常见的可导致数据可靠性问题的因素:

用于开发的数据,往往和实际情况下的数据分布不同。例如也许你想把用户按照身高划分为“高”、“中等”、“矮”三档,但如果系统开发时使用的数据集里最低用户的身高是6英尺(184cm),那么很有可能你开发出来的系统里会把一个“仅有6英尺”的用户称为“矮”用户

同步内容
--电子创新网--
粤ICP备12070055号