渲染管线

渲染管线研究:渲染管线示意图

一、 3D图形渲染(Rendering)

渲染:就是将三维物体或三维场景的描述转化为一幅二维图像,生成的二维图像能很好的反应三维物体或三维场景。过程:几何变换、光栅化、着色。

顶点渲染单元(Vertex Shader):根据描述3D图形外观的三角形顶点数据确定3D图形的形状及位置关系; 作几何变换、生成3D图像的骨架。

光栅化:显示的图像是由像素组成的,我们需要将描述3D图像骨架的一系列三角形通过一定的算法转换到相应屏幕上的像素点。把一个矢量图形转换为一系列像素点的过程就称为光栅化。例如,一条数学表示的斜线段,最终被转化成阶梯状的连续像素点。

像素渲染(Pixel Shader):光照、光线追踪、纹理帖图、像素着色。 也就是对每个像素进行计算,从而确定每个像素的最终颜色。最后由ROP(光栅化引擎)完成像素的输出,1帧渲染完毕后,被送到显存帧缓冲区;然后经由D/A转换输出到显示器上。

三维图形渲染管线

三维图形渲染管线就是将三维场景转化为一幅二维图像的过程。

图像中物体所处位置及外形由其几何数据和摄像机的位置共同决定,物体外表是受到其材质属性、光源、纹理及着色模型所影响。

三维图形渲染管线

管线过程由3个大的阶段组成:
三维图形渲染管线

Application(应用程序阶段):运行在CPU上,能被开发者完全控制,该过程所做操作包括:

① 准备场景数据
a. 加载模型:Mesh、Material、Shader、Texture(硬盘 --> 内存 --> 显存)
b. 摄像机(位置、朝向、视锥体)

Cocos2dx v3.x渲染管线流程

cocos2dx v3渲染流程做了很大的升级,具体的提升和新的特性大概有以下几点:

  •   场景的遍历和渲染分离开来,在遍历节点的时候会把绘图命令放入一个队列,并不会实际调用OpenGL渲染API;
  •   视锥体几何裁剪,摄像机视野外的对象将会自动从当前帧中移除,并不会进行渲染;
  •   执行OpenGL绘图命令的将会移动到一个独立的线程,更好地利用现在移动平台的多核CPU;
  •   自动合并批次
  •   基于节点的定制化渲染

Cocos2dx v3.x渲染管线流程

GPU渲染之OpenGL的GPU管线

GPU渲染流水线,是硬件真正体现渲染概念的操作过程,也是最终将图元画到2D屏幕上的阶段。GPU管线涵盖了渲染流程的几何阶段和光栅化阶段,但对开发者而言,只有对顶点和片段着色器有可编程控制权,其他一律不可编程。如下图:

GPU渲染之OpenGL的GPU管线

简单总结GPU管线,这阶段中主要是对图元进行操作。首先,将由应用阶段加载到显存中的顶点数据(由drawCall指定后)作为输入传递给顶点着色器。接着,顶点着色器首先对图元的每个顶点设置模型视图变换及投影变换(即右乘MVP矩阵),然后将变换后的顶点按照摄像机视椎体定义(即透视投影,或正投影)进行裁剪,将不在视野内的顶点去掉并剔除某些三角面片。最后到几何阶段的屏幕映射,负责把修改过的图元的坐标转换到屏幕坐标系中(即投影到屏幕上)。

学习shader之前必须知道的东西——渲染管线

所谓GPU的渲染管线,听起来好像很高深的样子,其实我们可以把它理解为一个流程,就是我们告诉GPU一堆数据,最后得出来一副二维图像,而这些数据就包括了”视点、三维物体、光源、照明模型、纹理”等元素。
在各种图形学的书中,渲染管线主要分为三个阶段:应用程序阶段、几何阶段、光栅阶段。

1、应用程序阶段

这个阶段相对比较好理解,就比如我们在Unity里开发了一个游戏,其实很多底层的东西Unity都帮我们实现好了,例如碰撞检测、视锥剪裁等等,这个阶段主要是和CPU、内存打交道,在把该计算的都计算完以后,在这个阶段的末端,这些计算好的数据(顶点坐标、法向量、纹理坐标、纹理)就会通过数据总线传给图形硬件,作为我们进一步处理的源数据。

2、几何阶段

主要负责顶点坐标变换、光照、裁剪、投影以及屏幕映射,改阶段基于GPU进行运算,在该阶段的末端得到了经过变换和投影之后的顶点坐标、颜色、以及纹理坐标。简而言之,几何阶段的主要工作就是“变换三维顶点坐标”和“光照计算”。

可编程图形渲染管线

着色程序分为两类:vertex shader program(顶点着色程序)和fragment shader program(片断着色程序)。

为了清楚的解释顶点着色和片断着色的含义,我们首先从阐述GPU上的两个组件:Programmable Vertex Processor(可编程顶点处理器,又称为顶点着色器)和 Programmable Fragment Processor(可编程片断处理器,又称为片断着色器)。

顶点和片段处理器被分离成可编程单元,可编程顶点处理器是一个硬件单元,可以运行顶点程序,而可编程片段处理器则是一个可以运行片段程序的单元。

顶点和片段处理器都拥有非常强大的并行计算能力,并且非常擅长于矩阵(不高于4阶)计算,片段处理器还可以高速查询纹理信息。

如上所述,顶点程序运行在顶点处理器上,片段程序运行在片段处理器上,哪么它们究竟控制了GPU渲染的哪个过程。图 8展示了可编程图形渲染管线。

可编程图形渲染管线

GPU渲染管线概述

1.顶点着色器

顶点着色器是流水线的第一个阶段,它的输入来自于CPU。顶点着色器的处理单位是顶点,也就是说输入进来的每个顶点都会调用一次顶点着色器。

顶点着色器需要完成的工作主要有:坐标变换和逐顶点光照。当然,除了这两个主要任务外,顶点着色器还可以输出后续阶段所需的数据。

坐标变换,顾名思义,就是对顶点的坐标进行某种变换。例如我们可以通过改变顶点位置来模拟水面,布料等。
一个最基本的顶点着色器必须完成的一个工作是:把顶点坐标从模型空间转换到齐次剪裁空间。类似下面代码:

o.pos=mul(UNITY_MVP,v.position);

2.裁剪

由于我们的场景可能会很大,而摄像机的视野范围很有可能不会覆盖所有的场景物体,一个很自然的想法就是,那些不在摄像机视野范围内的物体不需要被处理,而裁剪就是为了完成这个目的而被提出来的。

一个图元和摄像机的关系有3种:
• 完全在视野内
• 部分在视野内
• 完全在视野外

浅谈 GPU图形固定渲染管线

图形渲染管道被认为是实时图形渲染的核心,简称为管道。管道的主要功能是由给定的虚拟摄像机、三维物体、灯源、光照模型、纹理贴图或其他来产生或渲染一个二维图像。由此可见,渲染管线是实时渲染技术的底层工具。图像中物体的位置及形状是通过它们的几何描述、环境特征、以及该环境中虚拟摄像机的摆放位置来决定的。物体的外观受到了材质属性、灯源、贴图以及渲染模式(sharding modles)的影响。

很多计算机图形学的书籍都把渲染管线分为三个阶段:应用程序阶段、几何阶段、光栅化阶段。

1. 应用程序阶段(CPU)

应用程序阶段,通过高级编程语言(C、C++、JAVA)进行开发,与CPU、内存打交道,主要任务是识别出潜在可视的网格实例,并把它们及其材质呈交给图形硬件以供渲染。在该阶段的末端将产生几何体数据,包括顶点坐标、法向量、纹理坐标、纹理等,通过数据总线传送到图形硬件以供渲染(时间瓶颈),进行几何阶段。应用程序阶段负责驱动GPU管道,在该阶段有三个角色:
1.可见性判别:仅把可见(或至少潜在可见)的物体提交GPU,以免浪费宝贵的资源去渲染看不见的物体。(裁剪?)

图形渲染管线 The Graphics Rendering Pipeline

这篇文章是解析计算机图形学界“九阴真经总纲”一般存在的《Real-Time Rendering 3rd》系列文章的第二篇。将带来RTR3第二章内容“Chapter 2 The Graphics Rendering Pipeline 图形渲染管线”的总结、概括与提炼。

文章分为全文内容思维导图、核心内容分章节提炼、本章内容提炼总结三个部分来呈现,其中:
文章的第一部分,“全文内容思维导图”,分为“章节框架思维导图”和“知识结构思维导图”两个部分。
文章的第二部分,“核心内容分节提炼”,是按原书章节顺序分布的知识梳理。
而文章的第三部分“本章内容提炼总结”,则是更加精炼,只提炼出关键信息的知识总结。

一、全文内容思维导图

1.章节框架思维导图

图形渲染管线 The Graphics Rendering Pipeline

2.知识结构思维导图

GPU渲染管线与shader

1、几何阶段(顶点shader处理这部分)

模型坐标空间 - 世界坐标空间 - 观察坐标空间 - 屏幕坐标空间
其中从观察空间到屏幕空间需要经过3步(CVV单位立方体,规范立方体)
a、用透视变换矩阵把顶点从视锥体中变换到裁剪空间(齐次空间,用齐次坐标表示);
b、在裁剪空间进行图元裁剪;(这里就是视域剔除View Frustum Culling),然后齐次空间除w把点转换到CVV中
c、屏幕映射:将经过前述过程得到的坐标映射到屏幕坐标系上

GPU渲染管线与shader

顶点着色程序从GPU 前端模块(寄存器)中提取图元信息(顶点位置、法向量、纹理坐标等),并完成顶点坐标空间转换、法向量空间转换、光照计算等操作,最后将计算好的数据传送到指定寄存器中;然后片断着色程序从中获取需要的数据,通常为“纹理坐标、光照信息等”,并根据这些信息以及从应用程序传递的纹理信息(如果有的话)进行每个片断的颜色计算,最后将处理后的数据送光栅操作模块。

同步内容
--电子创新网--
粤ICP备12070055号