图像处理

图像滤波之高斯滤波介绍

1、高斯滤波简介

了解高斯滤波之前,我们首先熟悉一下高斯噪声。高斯噪声是指它的概率密度函数服从高斯分布(即正态分布)的一类噪声。如果一个噪声,它的幅度分布服从高斯分布,而它的功率谱密度又是均匀分布的,则称它为高斯白噪声。高斯白噪声的二阶矩不相关,一阶矩为常数,是指先后信号在时间上的相关性,高斯白噪声包括热噪声和散粒噪声。

高斯滤波器是一类根据高斯函数的形状来选择权值的线性平滑滤波器。高斯平滑滤波器对于抑制服从正态分布的噪声非常有效。一维零均值高斯函数为:

g(x)=exp( -x^2/(2 sigma^2)

其中,高斯分布参数Sigma决定了高斯函数的宽度。对于图像处理来说,常用二维零均值离散高斯函数作平滑滤波器,高斯函数的图形:

图像滤波之高斯滤波介绍

2、高斯滤波函数

对于图像来说,高斯滤波器是利用高斯核的一个2维的卷积算子,用于图像模糊化(去除细节和噪声)。

数字图像处理的基本原理和常用方法

数字图像处理是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。图像处理最早出现于 20 世纪 50 年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。数字图像处理作为一门学科大约形成于 20 世纪 60 年代初期。早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。

数字图像处理常用方法:

1 )图像变换:由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理(如傅立叶变换可在频域中进行数字滤波处理)。目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用。

图像分割之概述

所谓图像分割指的是根据灰度、颜色、纹理和形状等特征把图像划分成若干互不交迭的区域,并使这些特征在同一区域内呈现出相似性,而在不同区域间呈现出明显的差异性。我们先对目前主要的图像分割方法做个概述,后面再对个别方法做详细的了解和学习。

1、基于阈值的分割方法

阈值法的基本思想是基于图像的灰度特征来计算一个或多个灰度阈值,并将图像中每个像素的灰度值与阈值相比较,最后将像素根据比较结果分到合适的类别中。因此,该类方法最为关键的一步就是按照某个准则函数来求解最佳灰度阈值。

2、基于边缘的分割方法

所谓边缘是指图像中两个不同区域的边界线上连续的像素点的集合,是图像局部特征不连续性的反映,体现了灰度、颜色、纹理等图像特性的突变。通常情况下,基于边缘的分割方法指的是基于灰度值的边缘检测,它是建立在边缘灰度值会呈现出阶跃型或屋顶型变化这一观测基础上的方法。

阶跃型边缘两边像素点的灰度值存在着明显的差异,而屋顶型边缘则位于灰度值上升或下降的转折处。正是基于这一特性,可以使用微分算子进行边缘检测,即使用一阶导数的极值与二阶导数的过零点来确定边缘,具体实现时可以使用图像与模板进行卷积来完成。

3、基于区域的分割方法

图像处理的多线程计算

图像处理的算法复杂度通常都比较高,计算也相应比较耗时。利用CPU多线程处理能力可以大幅度加快计算速度。但是,为了保证多线程处理的结果和单线程处理的结果完全相同,图像的多线程计算有一些需要特别考虑的地方。

基本思路:为了能让多个线程同时并行处理,那么各自处理的数据不能有交集,这很好理解。那么基本思路是将一副图像分成多个子块,每个子块数据肯定是没有交集的,每个线程对一个子块数据进行处理,完成后将所有子块处理结果合成最终图像。

首先,每个子块的大小当然是必须考虑的问题。通常当应用进行一个较长时间的操作,应该用合适的方式告知用户。既然我们把图像分子块处理,如果单个子块处理时间很短,那么每当有一个子块的数据处理完成,我们就可以立即把它相应的处理结果展示给用户。用户就会看到这个图像各个部分的处理结果不断展示出来,直至整个图像完成。这样某种程度上用这种方式就是在告知用户正在处理进行中,避免为了把整个图像处理完成,用户需要等待太长时间。从这个角度来说,如果子块尺寸取的太大,每个子块计算时间肯定相应地加长,对于快速显示部分处理结果给用户是不利的。但是如果子块太小,子块总数就会增加,肯定会增加线程开销和其他一些开销(分割图像,分配子块数据等等),对于总的计算时间是不利的。这是一个权衡问题,可以根据具体情况确定。

图像处理基础(3):均值滤波器及其变种

均值滤波器可以归为低通滤波器,是一种线性滤波器,其输出为邻域模板内的像素的简单平均值,主要用于图像的模糊和降噪。

均值滤波器的概念非常的直观,使用滤波器窗口内的像素的平均灰度值代替图像中的像素值,这样的结果就是降低图像中的“尖锐”变化。这就造成,均值滤波器可以降低噪声的同时,也会模糊图像的边缘。均值滤波器的处理结果是过滤掉图像中的“不相关”细节,其中“不相关”细节指的是:与滤波器模板尺寸相比较小的像素区域。

根据均值计算方法的不同,均值滤波器有以下几种:

• 算术均值滤波器
• 几何均值滤波器
• 谐波均值滤波器
• 逆谐波均值滤波器

算术均值滤波器 Arithmetic Mean Filter

这是最简单的均值滤波器,可以去除均匀噪声和高斯噪声,但会对图像造成一定程度的模糊。
令Sxy表示中心点在(x,y)处,大小为m×n的滤波器窗口。算术均值滤波器就是简单的计算窗口区域的像素均值,然后将均值赋值给窗口中心点处的像素:

图像处理基础(2):自适应中值滤波器(基于OpenCV实现)

本文主要介绍了自适应的中值滤波器,并基于OpenCV实现了该滤波器,并且将自适应的中值滤波器和常规的中值滤波器对不同概率的椒盐噪声的过滤效果进行了对比。最后,对中值滤波器的优缺点了进行了总结。

空间滤波器

一个空间滤波器包括两个部分:
• 一个邻域,滤波器进行操作的像素集合,通常是一个矩形区域
• 对邻域中像素进行的操作

一个滤波器就是在选定的邻域像素上执行预先定义好的操作产生新的像素,并用新的像素替换掉原来像素形成新的图像。通常,也可以将滤波器称之为核(kernel),模板(template)或者窗口(window)。

根据预定义的操作,可以将滤波器分为:
• 线性滤波器
• 非线性滤波器

而根据滤波器最终对图像造成的影响,可以将滤波器分为:
• 平滑滤波器 ,通常用于模糊图像或者去除图像中的噪声
• 锐化滤波器,突出图像中的边缘细节部分

中值滤波器 Median Filter

图像处理基础(1):噪声的添加和过滤

总结学习下图像处理方面基础知识。

这是第一篇,简单的介绍下使用 OpenCV 的三个基本功能:

• 图像的读取
• 图像的显示
• 访问图像的像素值

然后概述下图像噪声的类型,并为图像添加两种常见的噪声:高斯噪声和椒盐噪声。
最后,使用中值滤波和均值滤波来处理带有噪声的图像。

OpenCV 基础

在 OpenCV 中,完成图像的输入输出以及显示,只需要以下几个函数:

1. namedWindow

创建一个可以通过其名字引用的窗口。第一个参数,设置窗口的 name,可以通过name引用该窗口;第二个参数,设置窗口的大小。有以下几个选择:

• WINDOW_NORMAL or WINDOW_AUTOSIZE 调整窗口的大小以适应图像,不同的是,使用WINDOW_NORMAL可以手动调整窗口的大小;WINDOW_AUTOSIZE不能调整窗口的大小。
• WINDOW_FREERATIO or WINDOW_KEEPRATIO 改变窗口时是否会保持图像的ratio不变,没发现这俩有什么区别。

2. imshow

显示图像

3. imread

如何在机器视觉系统中选择合适的照明系统?

机器视觉系统中的照明系统是极其重要的一部分,它的好坏直接影响着后面的图像处理。那么照明是怎样一门学问呢?如何在机器视觉系统中选择合适的照明系统呢?

合适的照明是机器视觉应用成功的关键,而且是第一要考虑的部分。一个设计良好的照明系统不仅会带来更好的性能,节约时间,而且从长远来看能节约成本。

下面来分享选择最合适机器视觉照明的八个小技巧:
(1) 检测材料缺损请使用亮度高的光;
(2) 精确定位请使用合适波长的光;
(3) 检测玻璃上的刮痕请使用非漫射的光,即Non-Diffused Light;
(4) 检测透明包装请使用漫射光,即Diffused Light;
(5) 创造对比请使用颜色光;
(6) 检测快速移动物体请使用频闪光;
(7) 消除反射时请使用红外光;
(8) 消除颜色变化请使用红外光;

照明是怎样影响机器视觉应用的呢?

对于将质量最为输出的机器视觉系统依赖于图像质量。
高质量的图像使得系统能够精确地解释出从检测物体中提取的信息,这样就可以产生可靠的并可重复的系统性能。

目标检测的图像特征提取之LBP特征

LBP(Local Binary Pattern,局部二值模式)是一种用来描述图像局部纹理特征的算子;它具有旋转不变性和灰度不变性等显著的优点。它是首先由T. Ojala, M.Pietikäinen, 和 D. Harwood 在1994年提出,用于纹理特征提取。而且,提取的特征是图像的局部的纹理特征;

1、LBP特征的描述

原始的LBP算子定义为在3*3的窗口内,以窗口中心像素为阈值,将相邻的8个像素的灰度值与其进行比较,若周围像素值大于中心像素值,则该像素点的位置被标记为1,否则为0。这样,3*3邻域内的8个点经比较可产生8位二进制数(通常转换为十进制数即LBP码,共256种),即得到该窗口中心像素点的LBP值,并用这个值来反映该区域的纹理信息。如下图所示:

目标检测的图像特征提取之LBP特征

LBP的改进版本:

原始的LBP提出后,研究人员不断对其提出了各种改进和优化。

计算机视觉与图像处理、模式识别、机器学习学科之间的关系

在我的理解里,要实现计算机视觉必须有图像处理的帮助,而图像处理倚仗与模式识别的有效运用,而模式识别是人工智能领域的一个重要分支,人工智能与机器学习密不可分。纵观一切关系,发现计算机视觉的应用服务于机器学习。各个环节缺一不可,相辅相成。

计算机视觉(computer vision):用计算机来模拟人的视觉机理获取和处理信息的能力。就是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,用电脑处理成为更适合人眼观察或传送给仪器检测的图像。

计算机视觉研究相关的理论和技术,试图建立能够从图像或者多维数据中获取‘信息’的人工智能系统。计算机视觉的挑战是要为计算机和机器人开发具有与人类水平相当的视觉能力。

机器视觉需要图象信号,纹理和颜色建模,几何处理和推理,以及物体建模。一个有能力的视觉系统应该把所有这些处理都紧密地集成在一起。

图像处理(image processing):用计算机对图像进行分析,以达到所需结果的技术。又称影像处理。

同步内容
--电子创新网--
粤ICP备12070055号