图像处理

图像处理基础(7):图像的灰度变换

前面几篇文章介绍的是图像的空间域滤波,其对像素的处理都是基于像素的某一邻域进行的。本文介绍的图像的灰度变换则不同,其对像素的计算仅仅依赖于当前像素和灰度变换函数。

灰度变换也被称为图像的点运算(只针对图像的某一像素点)是所有图像处理技术中最简单的技术,其变换形式如下:

s = T ( r )

其中,T 是灰度变换函数;r 是变换前的灰度;s 是变换后的像素。

图像灰度变换的有以下作用:
  •  改善图像的质量,使图像能够显示更多的细节,提高图像的对比度(对比度拉伸)
  •  有选择的突出图像感兴趣的特征或者抑制图像中不需要的特征
  •  可以有效的改变图像的直方图分布,使像素的分布更为均匀

常见的灰度变换

灰度变换函数描述了输入灰度值和输出灰度值之间变换关系,一旦灰度变换函数确定下来了,那么其输出的灰度值也就确定了。可见灰度变换函数的性质就决定了灰度变换所能达到的效果。

用于图像灰度变换的函数主要有以下三种:
  •  线性函数 (图像反转)
  •  对数函数:对数和反对数变换

图像处理基础(6):锐化空间滤波器

前面介绍的几种滤波器都属于平滑滤波器(低通滤波器),用来平滑图像和抑制噪声的;而锐化空间滤波器恰恰相反,主要用来增强图像的突变信息,图像的细节和边缘信息。平滑滤波器主要是使用邻域的均值(或者中值)来代替模板中心的像素,消弱和邻域间的差别,以达到平滑图像和抑制噪声的目的;相反,锐化滤波器则使用邻域的微分作为算子,增大邻域间像素的差值,使图像的突变部分变的更加明显。

本位主要介绍了一下几点内容:
  •   图像的一阶微分和二阶微分的性质
  •   几种常见的一阶微分算子
  •   二阶微分算子 - Laplace 拉普拉斯算子
  •   一阶微分算子和二阶微分算子得到边缘的对比

一阶微分和二阶微分的性质

既然是基于一阶微分和二阶微分的锐化空间滤波器,那么首先就要了解下一阶和二阶微分的性质。

图像的锐化也就是增强图像的突变部分,那么我们也就对图像的恒定区域中,突变的开始点与结束点(台阶和斜坡突变)及沿着灰度斜坡处的微分的性质。微分是对函数局部变化率的一种表示,那么对于一阶微分有以下几个性质:

图像处理基础(5):双边滤波器

双边滤波(Bilateral filter)是一种非线性的滤波方法,是结合图像的空间邻近度和像素值相似度的一种折衷处理,同时考虑空域信息和灰度相似性,达到保边去噪的目的。

双边滤波器之所以能够做到在平滑去噪的同时还能够很好的保存边缘(Edge Preserve),是由于其滤波器的核由两个函数生成:
  •   一个函数由像素欧式距离决定滤波器模板的系数
  •   另一个函数由像素的灰度差值决定滤波器的系数

其综合了高斯滤波器(Gaussian Filter)和 α-截尾均值滤波器(Alpha-Trimmed mean Filter)的特点。高斯滤波器只考虑像素间的欧式距离,其使用的模板系数随着和窗口中心的距离增大而减小;Alpha截尾均值滤波器则只考虑了像素灰度值之间的差值,去掉 α% 的最小值和最大值后再计算均值。

双边滤波器使用二维高斯函数生成距离模板,使用一维高斯函数生成值域模板。

距离模板系数的生成公式如下:

图像处理基础(5):双边滤波器

图像处理基础(4):高斯滤波器详解

本文主要介绍了高斯滤波器的原理及其实现过程

高斯滤波器是一种线性滤波器,能够有效的抑制噪声,平滑图像。其作用原理和均值滤波器类似,都是取滤波器窗口内的像素的均值作为输出。其窗口模板的系数和均值滤波器不同,均值滤波器的模板系数都是相同的为1;而高斯滤波器的模板系数,则随着距离模板中心的增大而系数减小。所以,高斯滤波器相比于均值滤波器对图像个模糊程度较小。

什么是高斯滤波器

既然名称为高斯滤波器,那么其和高斯分布(正态分布)是有一定的关系的。一个二维的高斯函数如下:

图像处理基础(4):高斯滤波器详解

其中 ( x , y ) 为点坐标,在图像处理中可认为是整数;σ 是标准差。要想得到一个高斯滤波器的模板,可以对高斯函数进行离散化,得到的高斯函数值作为模板的系数。例如:要产生一个 3×3 的高斯滤波器模板,以模板的中心位置为坐标原点进行取样。模板在各个位置的坐标,如下所示(x轴水平向右,y轴竖直向下)

图像的下采样Subsampling 与 上采样 Upsampling

一、目的

缩小图像(或称为下采样(subsampled)或降采样(downsampled))的主要目的:

1、使得图像符合显示区域的大小;

2、生成对应图像的缩略图。

放大图像(或称为上采样(upsampling)或图像插值(interpolating))的主要目的是放大原图像,从而可以显示在更高分辨率的显示设备上。

对图像的缩放操作并不能带来更多关于该图像的信息, 因此图像的质量将不可避免地受到影响。然而,确实有一些缩放方法能够增加图像的信息,从而使得缩放后的图像质量超过原图质量的。

二、原理

下采样原理:对于一幅图像I尺寸为M*N,对其进行s倍下采样,即得到(M/s)*(N/s)尺寸的得分辨率图像,当然s应该是M和N的公约数才行,如果考虑的是矩阵形式的图像,就是把原始图像s*s窗口内的图像变成一个像素,这个像素点的值就是窗口内所有像素的均值:

图像处理算法——边缘检测

图像处理领域中涉及很多特征,角点特征,边缘特征,形状特征,纹理特征,颜色特征,直方图统计特征等等(还有很多^_^)。这些特征有些是比较底层的特征,如角点特征,边缘特征,颜色特征等,有些则是较为高层的特征,如形状特征,纹理特征,直方图统计特征。

这里我们主要谈论底层特征中的边缘特征,提取这些特征的手段叫作边缘特征提取或叫作边缘检测。边缘检测常用的算子中分为一阶检测算子和二阶检测算子,这里提及的算子有些类似数学中的微分的概念(要有一定的数学基础哦)。边缘检测的另外一种形式也被成为相位一致性,这个概念我到后面再谈及,有了这个概念之后帮助我们从图像频域分析边缘提取这一过程。

表1 图像处理边缘检测算子分类表格
图像处理算法——边缘检测

图像处理算法——图像常用操作

图像处理基本算法操作从处理对象的多少可以有如下划分:
1. 点运算:处理点单元信息的运算
2. 群运算:处理群单元 (若干个相邻点的集合)的运算

表1 图像处理操作按处理对象数量分类表格

图像处理算法——图像常用操作

下图是一副普通的吉普车图像和我们生活中见到的并没有什么两样,但是在计算机看来则是另外一副“模样”了。图像中黄色部分则是几部车图像倒车镜的局部图像在计算机中的形态。

图像处理算法——图像常用操作
图1 计算机图像的真实表现形态

以上图为例说明几种重要的点运算和群运算。

图像处理算法——图像常用颜色空间

RGB颜色空间

RGB(red,green,blue)颜色空间最常用的用途就是显示器系统,彩色阴极射线管,彩色光栅图形的显示器 都使用R、G、B数值来驱动R、G、B 电子枪发射电子,并分别激发荧光屏上的R、G、B三种颜色的荧光粉发出不同亮度的光线,并通过相加混合产生各种颜色;扫描仪也是通过吸收原稿经反射或透射而发送来 的光线中的R、G、B成分,并用它来表示原稿的颜色。RGB色彩空间称为与设备相关的色彩空间,因为不同的扫描仪扫描同一幅图像,会得到不同色彩的图像数据;不同型号的显示器显示同一幅图像,也会有不同 的色彩显示结果。显示器和扫描仪使用的RGB空间与CIE 1931 RGB真实三原色表色系统空间是不同的,后者 是与设备无关的颜色空间。btw:Photoshop的色彩选取器(Color Picker)。可以显示HSB、RGB、LAB和CMYK 色彩空间的每一种颜色的色彩值。

图像处理之黑电平校正

1、黑电平定义

黑电平(Black Level Correction):即黑色数据的最低电平值,通常指感光图像数据为0时对应的sensor信号电平值。

2、黑点平成因

黑电平形成的原因有多种,主要的形成原因如下面两点:

(1) CMOS传感器采集的信息经过一系列转换生成原始RAW格式数据。以8bit数据为例,单个pixel的有效值是0~255,但是实际AD芯片(模数转换芯片)的精度可能无法将电压值很小的一部分转换出来,因此,sensor厂家一般会在AD的输入之前加上一个固定的偏移量,使输出的pixel value在5(非固定)~255之间,目的是为了让暗部的细节完全保留,当然同时也会损失一些亮部细节,由于对于图像来说,我们的关注度更倾向于暗部区域,ISP后面会有很多增益模块(LSC、AWB、Gamma等),因此亮区的一点点损失是可以接受的。

(2) sensor的电路本身会存在暗电流,导致在没有光线照射的时候,像素单位也有一定的输出电压,暗电流这个东西跟曝光时间和gain都有关系,不同的位置也是不一样的。因此在gain增大的时候,电路的增益增大,暗电流也会增强,因此很多ISP会选择在不同gain下减去不同的bl的值。

图像PNG格式、GIF格式介绍

PNG格式

1、图像png格式简介

PNG是20世纪90年代中期开始开发的图像文件存储格式,其目的是企图替代GIF和TIFF文件格式,同时增加一些GIF文件格式所不具备的特性。流式网络图形格式(PortableNetwork Graphic Format,PNG)名称来源于非官方的“PNG’s NotGIF”,是一种位图文件(bitmapfile)存储格式,读成“ping”。PNG用来存储灰度图像时,灰度图像的深度可多到16位,存储彩色图像时,彩色图像的深度可多到48位,并且还可存储多到16位的α通道数据。PNG使用从LZ77派生的无损数据压缩算法。

2、图像png文件结构

PNG图像格式文件(或者称为数据流)由一个8字节的PNG文件署名(PNG filesignature)域和按照特定结构组织的3个以上的数据块(chunk)组成。

同步内容
--电子创新网--
粤ICP备12070055号