计算机视觉

计算机视觉领域最全汇总(一)

计算机视觉是人工智能(AI)中的热门研究课题,它已经存在多年。然而,计算机视觉仍然是人工智能面临的最大挑战之一。在本文中,我们将探讨使用深度神经网络来解决计算机视觉的一些基本挑战。特别是,我们将研究神经网络压缩,细粒度图像分类,纹理合成,图像搜索和对象跟踪等应用。

计算机视觉——图像配准(Image Registration)

图像配准广泛用于遥感,医学图像,计算机视觉等。通常,它的应用根据图像获取方式主要分为四组:从不同视角获取同一场景图像;从不同时间获取同一场景图像;从不同传感器获得同一场景图像;场景到模型的配准。

入门计算机视觉,这7点可以让你少走点弯路

计算机视觉(Computer vision)是一门研究如何使机器“看”的科学,更进一步的说,就是指用摄影机和计算机代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图像处理,用计算机处理成更适合人眼观察或进行仪器检测的图像。

计算机视觉中的注意力机制

近些年来,随着 AlphaGo 的兴起,除了在游戏AI领域,深度学习在计算机视觉领域,机器翻译和自然语言处理领域也有着巨大的用武之地。随着深度学习的进一步发展,seq2seq 的训练模式和翻译模式已经开始进入人们的视野。除此之外,在端到端的训练方法中,除了需要海量的业务数据之外,在网络结构中加入一些重要的模块也是非常必要的。

推动计算机视觉、AI识别发展的四大关键趋势

早在2011年嵌入式视觉联盟(EVA)成立时,其创始公司就认为,在广泛的市场范围内,在实用计算机视觉技术和解决方案领域的投资、创新和部署,将很快出现前所未有的增长。在不到十年后,这一预测就真正实现了。在过去的六年中,美国和中国在计算机视觉公司领域的投资都在加速,过去六年的投资额增长了100倍,并且增长速度没有任何放缓的迹象......

深度解读计算机视觉技术

从广义上说,计算机视觉就是“赋予机器自然视觉能力”的学科。自然视觉能力,就是指生物视觉系统体现的视觉能力。一则生物自然视觉无法严格定义,在加上这种广义视觉定义又“包罗万象”,同时也不太符合40多年来计算机视觉的研究状况,所以这种“广义计算机视觉定义”,虽无可挑剔,但也缺乏实质性内容,不过是一种“循环式游戏定义”而已。

干货:变成计算机视觉大师,需要经历的几个阶段

计算机视觉(Computer vision)是一门研究如何使机器“看”的科学,更进一步的说,就是指用摄影机和计算机代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图像处理,用计算机处理成更适合人眼观察或进行仪器检测的图像。