目标检测

常见的计算机视觉任务综述

本文将主要介绍计算机视觉中的几个重要的研究方向。主要包括图像分类、目标检测、语义分割、实例分割、全景分割等。通过对这几个计算机视觉任务的对比,我们将更好的理解每个视觉任务的含义以及应用场景。我们将通过这张对比图来对以上的概念进行说明。

目标检测算法之Fast R-CNN算法详解

Fast R-CNN就是在R-CNN的基础上采纳了SPP Net的方法,使得性能进一步提高。与R-CNN相比,Fast R-CNN主要有两点不同:一是最后一个卷积层加入了ROI pooling layer,二是损失函数使用了多任务损失函数(multi-task loss),将边框回归Bounding Box Regression直接加入到CNN网络中训练

目标检测算法之R-CNN算法详解

R-CNN全称为Region-CNN,它可以说是第一个成功地将深度学习应用到目标检测上的算法。后面提到的Fast R-CNN、Faster R-CNN全部都是建立在R-CNN的基础上的。R-CNN遵循传统目标检测的思路,同样采用,对每个框提取特征、图像分类、非极大值抑制四个步骤进行目标检测,只不过进行了部分的改进。