特征工程

特征工程之特征预处理

本文我们来讨论特征预处理的相关问题。主要包括特征的归一化和标准化,异常特征样本清洗与样本数据不平衡问题的处理。由于标准化和归一化这两个词经常混用,所以本文不再区别标准化和归一化,而通过具体的标准化和归一化方法来区别具体的预处理操作。

特征工程之特征表达

在特征工程之特征选择中,我们讲到了特征选择的一些要点。本篇我们继续讨论特征工程,不过会重点关注于特征表达部分,即如果对某一个特征的具体表现形式做处理。主要包括缺失值处理,特殊的特征处理比如时间和地理位置处理,离散特征的连续化和离散化处理,连续特征的离散化处理几个方面。

机器学习:特征工程相关技术简介

机器学习的特征工程是将原始的输入数据转换成特征,以便于更好的表示潜在的问题,并有助于提高预测模型准确性的过程。找出合适的特征是很困难且耗时的工作,它需要专家知识,而应用机器学习基本也可以理解成特征工程。但是,特征工程对机器学习模型的应用有很大影响,有句俗话叫做“数据和特征决定了机器学习模型的性能上限”。

特征工程之特征选择

特征工程是数据分析中最耗时间和精力的一部分工作,它不像算法和模型那样是确定的步骤,更多是工程上的经验和权衡。因此没有统一的方法。这里只是对一些常用的方法做一个总结。本文关注于特征选择部分。后面还有两篇会关注于特征表达和特征预处理。

机器学习 | 特征工程(三)- 特征降维

当特征选择完成后,可以直接训练模型了,但是可能由于特征矩阵过大,导致计算量大,训练时间长的问题,因此降低特征矩阵维度也是必不可少的。降维(dimensionality reduction)是指通过对原有的feature进行重新组合,形成新的feature,选取其中的principal components。

机器学习 | 特征工程(二)- 特征选择

当数据预处理完成后,我们需要选择有意义的特征输入机器学习的算法和模型进行训练。通常来说,从两个方面考虑来选择特征:特征是否发散——如果一个特征不发散,例如方差接近于0,也就是说样本在这个特征上基本上没有差异,这个特征对于样本的区分并没有什么用;特征与目标的相关性——这点比较显见,与目标相关性高的特征,应当优选选择。

七种常用特征工程技术

当在做数据挖掘和数据分析时,数据是所有问题的基础,并且会影响整个工程的流程。相比一些复杂的算法,如何灵活的处理好数据经常会取到意想不到的效益。而处理数据不可或缺的需要使用到特征工程。简单的说,特征工程是能够将数据像艺术一样展现的技术。为什么这么说呢?因为好的特征工程很好的混合了专业领域知识、直觉和基本的数学能力。但是最有效的数据呈现其实并不涉及任何的数据运算。