深度学习

21个深度学习应用的实际技巧

本文的深度学习技巧来自吴恩达课程的笔记。运用深度学习解决问题除了需要掌握深度学习的理论知识外,还需要明白其中大量的技巧。这些技巧可以帮助我们加快训练速度,选取更好的算法和更合适的参数。我们将在后面逐步更新这里面的内容。

物理学对于深度学习可解释性的启发

如今,人工智能几乎存在于我们生活的每一个角落。智能手机、社交媒体供稿、推荐引擎、在线广告网络和导航工具是基于AI的应用程序的一些示例,这些应用程序每天都会影响我们。语音识别、自动驾驶、机器翻译和视觉对象识别等领域的深度学习已经系统地改进了现有技术的状态。

感知机原理小结

感知机可以说是最古老的分类方法之一了,在1957年就已经提出。今天看来它的分类模型在大多数时候泛化能力不强,但是它的原理却值得好好研究。因为研究透了感知机模型,学习支持向量机的话会降低不少难度。同时如果研究透了感知机模型,再学习神经网络,深度学习,也是一个很好的起点。这里对感知机的原理做一个小结。

深度学习卷积操作的维度计算

卷积操作的维度计算是定义神经网络结构的重要问题,在使用如PyTorch、Tensorflow等深度学习框架搭建神经网络的时候,对每一层输入的维度和输出的维度都必须计算准确,否则容易出错,这里将详细说明相关的维度计算。

找到合适深度学习模型的4个步骤

如果你一直在寻求使机器学习驱动的应用程序,你会注意到那里有大量的ML模型和模型实现,可能适合、也可能不适合您的任务。特别是如果你对特定类型的模型没有深入的了解,那么选择适合你的项目的模型实现可能会非常困难。

图像处理之深度学习

针对模糊图像的处理,个人觉得主要分两条路,一种是自我激发型:基于图像处理的方法,如图像增强和图像复原,以及曾经很火的超分辨率算法;另外一种属于外部学习型:就如同照葫芦画瓢一样的道理,其算法主要是深度学习中的卷积神经网络......接下来我们一起学习这两条路的具体方式。