机器视觉

六大机器视觉趋势

机器视觉趋势经常被讨论,那么可能影响工业自动化中机器视觉的这些技术的选择和实施有哪些实用的信息?机器视觉市场中3D成像组件的扩展是一个强劲的趋势,这是由对3D测量和指导的高需求以及作为3D成像系统一部分的成本效益技术的可用性的增加所推动的。

机器视觉技术的十大应用领域

机器视觉伴随着CCD/CMOS传感技术、计算机技术、嵌入式技术、现场总线技术的发展,CCD视觉检测技术已经逐步发展成为工业自动化生产过程中不可或缺的关键组成子系统。机器视觉系统被应用于各行业的生产设备中,助力行业设备升级,提高产线工艺水平,提升产品的质量和成品率,是现代工业的核心技术之一。

机器视觉中的光源与打光

机器视觉主要解决四大问题:定位、测量、检测、识别。在机器视觉中打光和光源影响着系统的稳定性,比如在测量应用中,光照发生10%-20%的变化,就可能导致图像边缘偏移1-2个像素,这些问题在算法层面是不容易解决的。所以了解光源和打光非常重要。

机器视觉光源的作用及选择标准

机器视觉是图像技术、模式识别技术以及计算机技术发展的产物,是实现智能化、自动化、信息化的先进技术领域。机器视觉的发展带动了人工智能的进步。机器视觉系统从物理结构上来讲,一般包括以下几个部分:光源、摄像机和镜头、图像采集卡、机器视觉软件等运动控制部分。

机器视觉镜头的主要特性及选择

机器视觉系统中使用的摄像机、镜头和照明都对图像的整体质量做出了重要贡献。过去几年CMOS图像传感器技术的快速发展为镜头制造商带来了重大挑战。越来越高的传感器分辨率意味着现在有许多传感器具有更小的像素,需要更高分辨率的镜头。

视觉导航定位系统工作原理及过程

当今,由于数字图像处理和计算机视觉技术的迅速发展,越来越多的研究者采用摄像机作为全自主用移动机器人的感知传感器。这主要是因为原来的超声或红外传感器感知信息量有限,鲁棒性差,而视觉系统则可以弥补这些缺点。

机器视觉常用术语介绍

机器视觉是配备有传感视觉仪器(如自动对焦相机或传感器)的检测机器,其中光学检测仪器占有比重非常高,可用于检测出各种产品的缺陷,或者用与判断并选择出物体,或者用来测量尺寸...等,应用在自动化生产线上对物料进行校准与定位。是计算视觉中最具有产业化的部分,主要大量应用于工厂自动化检测及机器人产业等。

机器视觉系统的组成、分类及优势

随着工业4.0时代的到来,机器视觉在智能制造业领域的作用越来越重要,机器视觉技术是如何工作的、它为什么是实现流程自动化和质量改进的正确选择等。机器视觉技术,是一门涉及人工智能、神经生物学、心理物理学、计算机科学、图像处理、模式识别等诸多领域的交叉学科。