机器学习

完整机器学习项目的工作流程

明确问题是进行机器学习的第一步。机器学习的训练过程通常都是一件非常耗时的事情,胡乱尝试时间成本是非常高的。这里的抽象成数学问题,指的我们明确我们可以获得什么样的数据,目标是一个分类还是回归或者是聚类的问题,如果都不是的话,如果划归为其中的某类问题。

机器学习-逻辑回归

我们可以按照任务的种类,将任务分为回归任务和分类任务。那这两者的区别是什么呢?按照较官方些的说法,输入变量与输出变量均为连续变量的预测问题是回归问题,输出变量为有限个离散变量的预测问题成为分类问题。

机器学习与深度学习常见47个面试题

一年一度的校园招聘已经开始了,为了帮助参加校园招聘、社招的同学更好的准备面试,SIGAI整理出了一些常见的机器学习、深度学习面试题。理解它们,对你通过技术面试非常有帮助,当然,我们不能只限于会做这些题目,最终的目标是真正理解机器学习与深度学习的原理、应用。

你真的理解正则化了吗?

说到正则化大家应该都不陌生,这个在机器学习和深度学习中都是非常常见的,常用的正则化有L1正则化和L2正则化。提到正则化大家就会想到是它会将权重添加到损失函数计算中来降低模型过拟合的程度。了解更多一点的同学还会说,L1正则化会让模型的权重参数稀疏化(部分权重的值为0),L2正则化会让模型的权重有趋于0的偏好。