机器学习

机器学习三兄弟概念大揭秘:「监督学习」「非监督学习」「强化学习」

在这篇文章中,我们将帮助你更好的理解监督学习、非监督学习和强化学习的定义的内涵,并从更广阔的视角中阐述它们与机器学习之间的联系。深入理解它们的内涵不仅有助于你在这一领域的文献中尽情的徜徉,更能引导你敏锐地捕捉到AI领域的发展和技术进步的气息。

机器学习模型脆弱性和安全性的提议

本文的目标是在流行的、传统的预测建模系统(如基于静态数据集训练的线性和树型模型)的上下文中,对潜在的安全漏洞和防御方法进行头脑风暴。虽然我不是安全专家,但我一直在密切关注机器学习的调试、解释、公平性、可解释性和隐私等领域。我认为这些领域中的许多技术可以应用于攻击和防御预测性模型系统。

有关扩大机器学习规模的五个启发

Gartner最近的一项调查显示,很多公司才刚刚开始机器学习之旅,而37%的组织已经实施了人工智能。如果你已经准备好接受机器学习,你可能先要评估十个问题或评估人工智能、机器学习和深度学习的完整指南,然后才能对机器学习进行概念验证。

正则项的理解之正则从哪里来

说到分类就要说到线性可分和线性不可分。这是属于模式识别中的概念。在欧几里德几何中,线性可分是一组点的集合性质。最容易描述的情况是在二维平面中,有一些点,分别是红色的点和蓝色的点。如果我们可以使用一条直线将不同颜色的点分开,那么这些点就是线性可分的......