机器学习

[深度学习] 不平衡样本的处理

机器学习中经典假设中往往假定训练样本各类别是同等数量即各类样本数目是均衡的,但是真实场景中遇到的实际问题却常常不符合这个假设。一般来说,不平衡样本会导致训练模型侧重样本数目较多的类别,而“轻视”样本数目较少类别,这样模型在测试数据上的泛化能力就会受到影响。

机器学习是如何区分猫和狗的?

最近人工智能方面最重要的发展之一就是机器学习了。它主要着眼于智能,而不是传统计算机程序意义上指定机器做什么东西,也就是说机器自己可以学习,这样它就可以直接从经验(或者数据)中学会如何处理复杂的任务。

机器学习模型:缓解偏差

在这篇文章中,你将了解在机器学习模型开发生命周期(MDLC)中应用的一些缓解偏差的策略,以实现偏差感知机器学习模型,我们主要目标是实现更高精度的模型,同时确保模型与敏感/受保护属性相比具有较小的判别性。简单来说,分类器的输出不应与受保护或敏感属性相关联。

机器学习变革制造业的10种方式

人工智能的引入将为制造行业带来巨大的经济效益。对此,不同的调研机构给出了相关的数据参考:IDC数据显示,到2021年,20%的领先制造企业将通过嵌入式智能、人工智能、物联网和区块链等技术实现流程自动化,并将执行时间缩短25%;德勤表示,机器学习可以让离散制造业的产品质量提高35%.......