机器学习和深度学习的 5 个关键区别
demi 在 周一, 03/01/2021 - 15:33 提交
“人工智能”、“机器学习”和“深度学习”这三个词经常交替出现,但如果你正在考虑从事人工智能的职业,了解它们之间的区别是很重要的。
“人工智能”、“机器学习”和“深度学习”这三个词经常交替出现,但如果你正在考虑从事人工智能的职业,了解它们之间的区别是很重要的。
深度学习是机器学习算法的子类,其特殊性是有更高的复杂度。因此,深度学习属于机器学习,但它们绝对不是相反的概念。我们将浅层学习称为不是深层的那些机器学习技术。
特征选择:我们可以选出原始特征的一个子集。特征提取:通过现有信息进行推演,构造出一个新的特征子空间。
人工智能和机器学习是市场上的热门技术。从电子商务到先进的量子计算系统,再到医疗诊断系统再到消费电子产品,尤其是时下流行智能助手,各行各业都在将人工智能和机器学习应用到行业的创新中。根据IDC的数据,2020年人工智能在全球范围内产生的收入约为1560亿美元 ,比2019年增长了12.3%。在已经到来的2021年AI和ML趋势又将如何演进?
在机器学习中,过拟合(overfitting)会使模型的预测性能变差,通常发生在模型过于复杂的情况下,如参数过多等。本文对过拟合及其解决方法进行了归纳阐述。
网络攻击活动如今日益猖獗,以至于组织采用的安全工具很难保护其业务并打击网络攻击者。采用机器学习和人工智能技术可以改善网络安全性。
计算机视觉使计算机能够理解图像和视频的内容。计算机视觉的目标是使人类视觉系统可以实现任务自动化。计算机视觉任务包括图像采集、图像处理和图像分析。图像数据可以采用不同的形式,例如视频序列,从多个角度的不同的摄像机查看图像或来自医疗扫描仪的多维数据。
如果你对人工智能和机器学习感兴趣,而且正在积极地规划着自己的程序员职业生涯,那么你肯定面临着一个问题:你应该学习哪些编程语言,才能真正了解并掌握 AI 和机器学习?
人工智能和机器学习如今一直在改变着我们的世界,2020年发生的冠状病毒疫情为这两种技术带来了新的机会和紧迫性,预计在2021年将会有更大的发展。疫情显然已经成为一种催化剂,从产品创新到消费者偏好,影响了从办公室到远程工作的业务发展。随着人们在未来一年不断适应,将会看到人工智能和机器学习技术在2021年的五个发展趋势……
机器学习中的数据偏差是一种错误,其中数据集的某些元素比其他元素具有更大的权重和或表示。有偏见的数据集不能准确地表示模型的用例,从而导致结果偏斜,准确性水平低和分析错误。