图像分割

图像处理--图像分割算法介绍

图像分割的主要算法:1.基于阈值的分割方法;2.基于边缘的分割方法;3.基于区域的分割方法;4.基于聚类分析的图像分割方法;5.基于小波变换的分割方法;6.基于数学形态学的分割方法;7.基于人工神经网络的分割方法;8. 基于遗传学算法的分割方法。

图像分割简介

计算机视觉的基本任务包括图像识别,物体检测,图像分割等。图像识别主要是对给定图像进行分类;物体检测需要将利用矩形框将图像中的物体标识出来;图像分割需要将图像中不同的像素点进行分类,与物体检测相比,图像分割更加细致,难度更大,FCN是利用机器学习的方法进行图像分割,但是图像分割还有其他不同的方法,这也是我在这篇博客里头要提到的。

超像素、语义分割、实例分割、全景分割,傻傻分不清?

图像分割中的一些常见的术语有:superpixels(超像素)、Semantic Segmentation(语义分割)、Instance Segmentation(实例分割)、Panoptic Segmentation(全景分割)。他们之间到底有什么区别呢?

卷积神经网络(CNN)——从图像分类到图像分割

从图像分类到图像分割

卷积神经网络(CNN)自2012年以来,在图像分类和图像检测等方面取得了巨大的成就和广泛的应用。

CNN的强大之处在于它的多层结构能自动学习特征,并且可以学习到多个层次的特征:较浅的卷积层感知域较小,学习到一些局部区域的特征;较深的卷积层具有较大的感知域,能够学习到更加抽象一些的特征。这些抽象特征对物体的大小、位置和方向等敏感性更低,从而有助于识别性能的提高。

这些抽象的特征对分类很有帮助,可以很好地判断出一幅图像中包含什么类别的物体,但是因为丢失了一些物体的细节,不能很好地给出物体的具体轮廓、指出每个像素具体属于哪个物体,因此做到精确的分割就很有难度。

传统的基于CNN的分割方法的做法通常是:为了对一个像素分类,使用该像素周围的一个图像块作为CNN的输入用于训练和预测。

图像分割网络FCN原理详解

一、全卷积网络(FCN)

卷积神经网络从图像分类到到对象检测、实例分割、到图像语义分割、是卷积特征提取从粗糙输出到精炼输出的不断升级,基于卷积神经网络的全卷积分割网络FCN是像素级别的图像语义分割网络,相比以前传统的图像分割方法,基于卷积神经网络的分割更加的精准,适应性更强。

为了了解全卷积网络,我们必须他与普通CNN网络的区别:

1.1 CNN网络

通常CNN网络在卷积层之后会接上若干个全连接层, 将卷积层产生的特征图(feature map)映射成一个固定长度的特征向量。以AlexNet为代表的经典CNN结构适合于图像级的分类和回归任务,因为它们最后都期望得到整个输入图像的一个数值描述(概率),比如AlexNet的ImageNet模型输出一个1000维的向量表示输入图像属于每一类的概率(softmax归一化)。

  •   举例:下图中的猫, 输入AlexNet, 得到一个长为1000的输出向量, 表示输入图像属于每一类的概率, 其中在“tabby cat”这一类统计概率最高(如下图)。