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1 Background

The MIPS Multithreading (MIPS MT) ASE is defined in a rather complex specification document, the details of
which can sometimes obscure the general principles of the architectural extension. This document is intended to serve
as an introduction to the MIPS MT specification.

2 What is Multithreading?

As processor operating frequency increases, it becomes increasingly difficult to hide latencies inherent in the opera-
tion of a computer system. A high-end synthesizable core taking 25 cache misses per thousand instructions (a plausi-
ble value for “multimedia” code) could be stalled more than 50% of the time if it has to wait 50 cycles for a cache fill.

More generally, individual computer instructions have specific semantics, such that different classes of instructions
require different resources to perform the desired operation. Integer loads don’t exploit the logic or registers of a
floating-point unit, any more than register shifts require the resources of a load/store unit. No single instruction con-
sumes all of a computer’s resources, and the proportion of the total system resources that is used by the average
instruction diminishes as one adds more pipeline stages and parallel functional units to high-performance designs.

Multithreading arises in large measure from the notion that, if a single sequential program is fundamentally unable to
make fully efficient use of a processor’s resources, the processor should be able to share some of those resources
among multiple concurrent threads of program execution. The result does not necessarily make any particular pro-
gram execute more quickly - indeed, some multithreading schemes actually degrade the performance of a single
thread of program execution - but it allows a collection of concurrent instruction streams to run in less time and/or on
a smaller number of processors.

Multithreading can provide benefits beyond improved multitasking throughput, however. Binding program threads to
critical events can reduce event response time, and thread-level parallelism can, in principle, be exploited within a
single application program to improve absolute performance.

2.1 Varieties of Multithreading

There are a number of implementation models for multithreading that have been proposed, some of which have been
implemented commercially.

Interleaved Multithreading is a TDM-style approach which switches from one thread to another on each instruction
issued. Interleaved multithreading assures some degree of “fairness” in scheduling threads, but implementations
which do static allocation of issue slots to threads generally limit the performance of a single program thread.
Dynamic interleaving ameliorates this problem, but is more complex to implement.

The diagram below shows how instructions from program threads “A” and “B” might be issued. In the classical sca-
lar RISC case, we see 4 consecutive instructions from program A being issued, with one wasted cycle due to a pipe-
line stall. A statically interleaved scheme which alternates between two threads might only be able to issue three
instructions in the same amount of time, if A is the only thread available to run, as shown in the left-hand column, but
if A and B are both runnable, as shown in the right hand column, the alternance between the two fills the pipeline and
hides the stall in A. A dynamic interleaving scheme allows a single thread to run without degradation relative to the
scalar RISC case, while still achieving better efficiency if multiple threads can be run.
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Blocked Multithreading issues consecutive instructions from a single program thread until some designated block-
ing event, such as a cache miss, causes that thread to be suspended and another thread activated.

The diagram below shows how instructions from program threads “A” and “B” might be issued in a blocked multi-
threading system, relative to a scalar RISC. The scalar RISC stalls for as long as it takes to perform the cache refill,
shown here as a wildly optimistic three cycles. A blocked multithreading design might behave identically to the sca-
lar RISC if there is no other thread to run, but given two threads, the blocked multithreading processor switches from
thread A to thread B as soon as thread A encounters the major stall. Note that the thread switch may not be instanta-
neous, and that while thread A is runnable on the last cycle shown, thread B retains the processor, since it has not yet
been blocked.

Because blocked multithreading changes threads less frequently, its implementation can be simplified. On the other
hand, it is less “fair” in scheduling threads. A single thread can monopolize the processor for a long time if it is lucky
enough to find all of its data in the cache.

Hybrid scheduling schemes combining elements of blocked and interleaved multithreading have also been built and
studied.

Simultaneous Multithreading is a scheme implemented on superscalar processors wherein instructions from differ-
ent threads can be issued concurrently.

The diagram below shows a superscalar RISC, issuing up to two instructions per cycle, and a simultaneously multi-
threaded superscalar pipeline, issuing up to two instructions per cycle from either of the two threads. Those cycles
where dependencies or stalls prevented full utilization of the processor by a single program thread are filled by issu-
ing instructions for another thread.

Simultaneous multithreading is thus a very powerful technique for recovering lost efficiency in superscalar pipelines.
It is also the most complex multithreading system to implement. More than one thread may be active at a given pipe-
line stage on a given cycle, complicating the implementation of memory access protection, etc.
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2.2 Multithreading versus Multicore/multiprocessors

Multithreading and multiprocessing are closely related. Indeed, one could argue that the difference is one of degree:
Whereas multiprocessors share only memory and/or connectivity, multithreaded processors share those, but also
share instruction fetch and issue logic, and potentially other processor resources. In a single multithreaded processor,
the various threads compete for issue slots and other resources, which limits parallelism. Some “multithreaded” pro-
gramming and architectural models assume that new threads are assigned to distinct processors, to execute fully in
parallel.

In very-high-end processors like the Intel P4, the throughput improvement from the limited parallelism provided by a
multithreaded processor seems to be quite good relative to the incremental silicon cost, figures like 65% more
throughput in return for 5% more silicon have been claimed. It must be understood, however, that the silicon cost of
multithreading can be much higher as a percentage of total area in a small embedded core, relative to a Pentium 4-
class processor.

In the light of all this, the MIPS MT ASE strives to provide a framework both for the management of parallel threads
on the same CPU and for the management of parallel threads across multiple cores, and indeed for the migration of
threads from one multithreaded processor to another.

3 Philosophical Principles

The MIPS MT multithreading ASE follows a set of philosophical principles which provide that it be

1. Scalable - The ASE should be implementable on simple, small, and high-frequency cores and still enable high
efficiency of utilization on large, complex designs.

2. Migratable - The ASE should allow threads to migrate from processor to processor to balance load, and be ame-
nable to multicore/multithreaded hybrid processor implementations.

3. Scheduling Agnostic - The ASE should be independent of the thread scheduling policies and mechanisms
employed, and lend itself to simultaneous, interleaved, or blocked multithreading.

4. Virtualizable - The physical resources which support multithreading should be invisible or abstracted to the user-
mode code, such that software which consumes more resources than exist on a particular implementation can
nevertheless execute correctly, given appropriate OS support.

5. Run-time Efficient - Basic operations of thread creation and destruction, and of inter-thread communication and
synchronization, should be realizable in a minimal number of clock cycles, without OS intervention in the most
probable cases.

Where these principles conflict with one another, reasonable compromises are made.
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4 MIPS MT ASE Definitions

The MIPS MT ASE is an application-specific extension of the MIPS32/MIPS64 instruction set and privileged
resource architecture, meaning that it is a true architectural superset.

A thread of execution, or thread, is a sequential MIPS32/MIPS64 ISA instruction stream. A conventional MIPS
processor runs a single thread at a time.

A thread context, or TC, is the hardware state necessary to support a thread of execution. This includes a set of gen-
eral purpose registers (GPRs), a program counter (PC), and some multiplier and coprocessor state.

A multithreaded processor implements more than one TC, and can have more than one thread active at a time.

A virtual processing element, or VPE, is an instantiation of the full MIPS32/MIPS64 ISA and privileged resource
architecture (PRA), sufficient to run a per-processor OS image. A VPE can be thought of as an “exception domain”,
as exception state and priority apply globally within a VPE, and only one exception can be dispatched at a time on a
VPE. A conventional MIPS core embodies a single VPE.

A virtual multiprocessor, or VMP, is a collection of interconnected VPEs. A VMP may be a single multithreaded
MIPS processor core which implements multiple VPEs, and allows them to execute concurrently. In principle, a
VMP may also be composed of multiple RISC cores, each of which may or may not be multithreaded.

4.1 Threads versus VPEs

Why the distinction between threads and VPEs? Because there are two ways for software to approach multithreading,
one which is easy, but relatively expensive in silicon support and limited in the leverage provided to applications, and
another which is more difficult to program, but which provides leverage for finer degrees of parallelism at a lower
cost in silicon.

VPE Parallelism is equivalent to symmetric multiprocessor (SMP) parallelism. This means that operating systems
which know how to deal with SMP system configurations can easily be adapted to run multi-VPE cores, and that pro-
grams already written using SMP multithreading or multi-tasking can exploit VPE parallelism.

Thread Parallelism in the context of the proposed ASE refers to fine-grained, explicitly controlled thread parallel-
ism. This requires new OS/library/compiler support, but takes full advantage of low thread creation and destruction
overhead to exploit parallelism at a granularity that would otherwise be impractical. The hardware support require-
ment for a TC is less than that of a VPE, so more TCs can be instantiated per unit of chip area.

4.2 Threads and Shadow Register Sets

Thread context storage on a MIPS processor can be used either to instantiate multiple parallel threads, or optionally to
implement MIPS32 Release 2 shadow register sets (SRSs).

A TC is assigned to an SRS by writing the its number into the field of a new SRS configuration register
(SRSConf0...4) which corresponds to the shadow set (1..15) by which the TC’s storage will be referenced.

If an SRS is bound to an exception, it will be used by the handler for that exception, regardless of which TC is being
used by the thread of execution causing the exception.
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4.3 Implementation and Instantiation of Thread Contexts

The “name space” for TCs in MIPS MT is flat, with thread numbers ranging from 0 to 255. This does not mean that
256 TCs need to be implemented, nor that the full implemented compliment of architecturally visible threads needs to
be instantiated as high speed, multi-ported register files. Designers may implement a hierarchy of thread storage, pro-
vided that the software semantics of the ASE are respected. A typical implementation would be a flat structure of 4-8
TCs.

4.4 Thread Context State Versus Thread Scheduling State

It is important to distinguish between the software-visible state of a TC as defined by the MIPS MT ASE, and the
hardware state associated with the selection and scheduling of runnable threads. As seen by software, a MIPS MT TC
may be in either a free or an activated allocation state, and independent of its allocation state, it may be halted, but an
activated TC should not be confused with a “running” thread, though a running thread must have an activated context,
nor should a halted TC be confused with a “waiting” thread. The following diagram shows the TC resource states
superimposed on an implementation’s thread scheduling state machine.

5 The Multithreading ASE Instructions

The MIPS MT ASE extends both the instruction set and the privileged resources of MIPS32/MIPS64 architecture.
The PRA extensions allow an operating system to manipulate the hardware resources associated with multiple VPEs
and threads. The ISA extensions allow for efficient user-mode creation and destruction of threads so as to not require
OS intervention in the typical cases.

5.1 Thread Creation

Threads can be directly created in user mode by using the new FORK instruction. The FORK instruction takes three
operands. The first is the instruction address at which the new thread will begin execution, the second is an arbitrary

Terminated Ready Running Waiting
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register value to be passed to the new thread, typically a pointer to a block of thread-specific storage, and the third, an
output parameter, is the register in the new thread’s TC which will receive that second input operand value.

Design Considerations:

• No Implicit Context Copy. Some high-level multithreading software paradigms require that each new thread
receive a copy of the full register set. Others do not. A MIPS32 user mode thread context consists of 31 GPRs
(register 0 being always 0), the Hi/Lo or ACX/Hi/Lo accumulator, and some coprocessor state. Copying the full
state in a single cycle would require an unrealistically wide interconnect between TCs. Copying sequentially, at a
rate of 1-2 registers per cycle, would be complex and time consuming. The FORK instruction passes a single
GPR value parameter to the newly spawned thread. If more than a single value is required for the computation,
this value can be a pointer to a context block in memory that will contain register and other values needed by the
thread computation. A FORK also implicitly propagates some privileged state, such as the contents of the ASID
register, but the objective is to minimize the “payload” of a FORK operation, in part to minimize the hardware
implementation cost, but also in anticipation of multicore “remote” FORKs, where the information would need
to be transmitted between processing elements.

• No Value Provided to Forking Thread. Some high-level multithreading paradigms require that thread creation
return a value to the “parent” thread performing the fork operation. This value is use as a handle or tag for future
operations which may reference the thread. The proposed FORK instruction does not do this, for two reasons.
First, it would require a register-file write beyond the write of the GPR value parameter to the register file of the
new thread, which creates an undesirable constraint on the design of multithreaded register files. Second, it cre-
ates a name-space problem. In the course of its lifetime, the newly created thread may end up executing on dif-
ferent register sets of the same CPU, due to context switching, and it may even be migrated to some other
processing element. Having hardware provide, as an output of the FORK instruction, a system-unique identifier
that would follow each new thread, would be possible, but rather complex to impose on small, embedded cores.
Where traceability is required, it can be accomplished using software-based memory interactions.

• Absolute Virtual Thread Starting Address. The FORK instruction takes as an input operand a register value
which is taken to be the starting instruction fetch address for the new thread. Two alternative semantics were
considered and rejected. It would have been possible to define FORK such that the new thread simply begins
executing at the address following that of the FORK instruction. The two threads could be distinguished by data
addressable through the parameter register value passed by the FORK. That would imply that the parent, as well
as the child thread, perform the load, evaluation, and control transfer, which was rejected as wasteful. It would
also have been possible to have the FORK instruction contain a “branch” offset in its encoding, rather than spec-
ify a register containing a full jump address. This would have made forks to thread code located quite close to the
FORK instruction more efficient, but would have penalized all other FORKs by forcing them to perform a dou-
ble control transfer.

Issuing a FORK instruction when there are no free, dynamically allocatable TCs available on the VPE causes a
Thread “overflow” exception that can be used by system software to virtualize threads. A program can thus create
and use a larger number of software threads than the available compliment of TCs, so long as the OS provides higher
level scheduling to swap them in and out.

Issuing a FORK instruction when multi-TC scheduling is inhibited on the issuing VPE does not necessarily result in a
failure or exception. So long as a TC can be successfully allocated, it is set up to run by the FORK operation, and will
begin execution once TC scheduling is enabled.
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6 Thread Suspension and Destruction

Thread execution is suspended by the YIELD instruction, which takes as an input operand a descriptor of the circum-
stances under which the issuing thread should be resumed. If the operand has a value of zero, there are no circum-
stances under which the thread will resume, and it is de-allocated so that the associated TC may be re-used.

Negative descriptor values are reserved by MIPS for architecturally defined rescheduling conditions. A value of -1
requests that the YIELDing thread be rescheduled without waiting for any specific condition, but allowing other
threads to “play through”, according to the implemented thread scheduling scheme. A value of -2 samples the YIELD
Qualifier inputs (see below) without any rescheduling of the thread.

Positive descriptor values represent a vector of up to 31 independent “YIELD Qualifier” bits which are hardware
inputs to the processor. In simple systems, these qualifier inputs may be directly connected to sources such as inter-
rupt inputs, as shown below.

In more complex system configurations, incoming signals may be filtered and multiplexed by intermediary logic,
configurable by software to map system signals to YIELD qualifiers as required by the application.

If interrupt request signals are brought into the YIELD qualifiers as described, even an interrupt condition that is
masked by software so that it will not cause any exception vector to be executed can be used to enable the reschedul-
ing of a service thread, for “zero latency” handling. On processors and VPEs using fine-grained multithreading, this
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Interrupt Inpu[0:5]
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has the additional advantage of not causing the processor/VPE to suspend multithreading due to entry by one thread
into an exception handler.

Because positive-valued YIELD input parameters may describe combinations of possible events, any which may re-
enable execution, the YIELD instruction produces a register value which contains implementation-specific informa-
tion, such as which of several possible gating events cause the resumption of execution.

A Yield 0 which would terminate and deallocate the last dynamically allocatable TC on a VPE, such that none are left
to execute, causes a Thread exception with an indication of the “underflow” condition.

The MIPS MT ASE provides mechanisms for an operating system to intercept and emulate YIELD operations. If a
per-VPE enable is set, rescheduling YIELDs trap to the operating system with a designated exception code and sub-
code identifying a YIELD scheduler intercept. The operating system can evaluate the current YIELD qualifier input
state, check it against the contents of the register specified by the trapping YIELD instruction, and make its own
determination whether the YQ input values (or some synthetic value) should be placed in the YIELD’s destination
register, and the TC restarted at the instruction following the YIELD, or whether the TC contents should be swapped
to memory and replaced with the context of another thread of execution.

Each TC has a status bit that is set whenever an instruction is completed for that TC, outside of low-level exception
handlers. This bit has multiple software uses, and it is further used by hardware to enable the YIELD scheduler inter-
cept exception. An operating system which wishes to allow a TC to resume and remain blocked on a YIELD after
handling a YIELD scheduler intercept exception can clear this “DT” (Dirty Thread) bit before restarting the TC on
the YIELD, and that particular TC will remain blocked until the YIELD qualifiers are satisfied, or until some other
OS intervention takes place. If the YIELD completes due to the qualifiers being satisfied, the DT bit will be set, and
the next blocking YIELD issued by that thread will trap if the YIELD scheduler intercept exceptions are still enabled.

6.1 Other New Instructions

• While FORK and YIELD are the two primitives on which user-mode multithreading is based,. the proposed mul-
tithreading ASE also includes some privileged instructions to help manage thread and VPE resources.

• MTTR is a privileged, “COP0” instruction which moves information from a register of the issuing thread to a
register of another thread context on the same processor.

• MFTR is a privileged, “COP0” instruction which moves information from a register of another thread context on
the same processor to a register of the issuing thread.

• EMT is a privileged, “COP0” instruction which atomically enables multithreaded issue on a VPE.

• EVPE is a privileged, “COP0” instruction which atomically enables multi-VPE issue on a VMP.

• DMT is a privileged, “COP0” instruction which atomically disables multithreaded issue on a VPE.

• DVPE is a privileged, “COP0” instruction which atomically disables multi-VPE issue on a VMP.

EMT, DMT, EVPE, and DVPE are in fact instances of the “MFMC0” instruction, much like the Release 2 EI and DI
instructions.
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7 New Privileged Resources

Some new privileged resources are required to manage the multithreading capabilities of a VPE. Three registers are
defined to be per-processor, common to all VPEs on a core:

• A MVPControl register which contains control bits for managing multi-VPE processors.

• The MVPConf0 and optional MVPConf1 registers contain information about global multithreaded processor
resources which can be configured at boot time and bound to different VPEs.

• A total of 11 registers are defined to be per-VPE, common for all TCs within the VPE:

• A VPEControl register which contains information about the configuration of threads within a VPE.

• The VPEConf0 and VPEConf1 registers contain per-VPE information about the multithreading resources avail-
able to the VPE.

• A YQMask register which allows certain YIELD qualifier bits (see section 6) to be masked, so that an attempt to
suspend execution pending that state will result in an exception.

• The optional VPESchedule register allows for the hardware scheduling algorithms of a processor to be manipu-
lated to guarantee some “quality of service” to VPEs with hard real-time requirements.

• The optional VPEScheFBack register is the counterpart to the VPESchedule register, providing per-VPE feed-
back from the core scheduler logic to system software.

• An optional VPEOpt register which provides control/status information for optional features, such as run-time
cache partitioning.

• Five optional SRSConf0-SRSConf4 registers allow for run-time binding of TCs to Release 2 Shadow Register
Sets.

Seven registers are defined to be per-TC.

• A TCStatus register which contains privileged resource information per-thread, such as the Kernel/User state of
the thread, or whether it has access to a coprocessor.

• A TCBind register which defines a TC’s binding to a VPE.

• A TCRestart register which contains the restart fetch and execution address of a TC.

• A TCHalt register which allows a TC to be put into or taken out of a halted state with a single register write.

• A TCContext register which is simply a storage register implemented per-thread, which allows the OS to have
instant access to a value, typically a memory pointer such as a kernel stack pointer, that is unique per-thread.

• The optional TCSchedule register allows for the hardware scheduling algorithms of a processor to be manipu-
lated to guarantee some “quality of service” to threads with hard real-time requirements.

• The optional TCScheFBack registers is the counterpart to the ThreadSchedule register, providing per-TC feed-
back from the core scheduler logic to system software.
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8 Threads and Exceptions

By definition, VPE parallelism introduces nothing new in the handling of exceptions for single-threaded VPEs within
a multi-VPE processor. In the explicit, fine-grained model, however, multiple threads of execution with multiple
hardware thread contexts share common system coprocessor resources. This has a number of implications for hard-
ware and software.

Since there is only one Cause register to contain the reason for an exception, a single VPE cannot manage concurrent
exceptions. When a synchronous exception is provoked by a thread, as in the case of a TLB miss or a floating-point
exception, the MIPS32/MIPS64 architecture stipulates that the EXL or ERL bits of the Status register be set, which
block interrupts and further general exceptions from being taken. In MIPS MT, the setting of EXL/ERL also prevents
the scheduling of other threads until it is cleared by the exception handler.

Short exception handling sequences like TLB miss handlers can reasonably be coded as for a non-multithreaded
MIPS32/MIPS64 processor, and re-enable multithreading implicitly with the clearing of EXL by the ERET instruc-
tion. More complex exception handling sequences, such as OS system calls, may explicitly re-enable the concurrent
execution of non-privileged application threads by clearing EXL once the Cause information has been acquired and
saved by the OS.

On a synchronous exception, the TC associated with the instruction stream causing the exception is the one which is
associated with the exception: If the exception is not bound to a shadow register set, the associated TC is used to exe-
cute the exception handler, and if a shadow register set is used, the associated TC is used as the “previous shadow
set”. Asynchronous exceptions, such as interrupts, can be associated with any available activated TC, with the restric-
tion that TCs used by real-time service threads may be designated as exempt from use by interrupt service routines by
setting a the IXMT per-thread control bit.

If all activated TCs are explicitly blocked via YIELD instructions or uncompleted loads/stores of gating storage loca-
tions (see section 12.1), asynchronous exceptions, including Debug exceptions, must be associated with such a
blocked TC. The associated handlers will be executed using the previously blocked context, aborting the YIELD or
load/store, and the VPE will resume execution on an ERET by re-fetching and re-executing the YIELD or load/store.
An aborted gating storage load or store must leave the state of the storage location as it would have been had the
instruction never been issued.

EJTAG Debug exceptions are special in several regards with respect to MIPS MT. Like other exceptions, they exe-
cute within the context of a specific VPE, but whereas the setting of EXL or ERL by a “normal” exception inhibits
thread scheduling only within the affected VPE, Debug mode execution inhibits thread scheduling across all VPEs of
a virtual multiprocessor core. And whereas other asynchronous exceptions, such as interrupts, require a TC that is
activated and not halted (though it may have been blocked) to process the exception, an asynchronous Debug excep-
tion, such as that caused by the assertion of a DINT signal by an EJTAG probe, can be serviced by any TC bound to
the targeted VPE, regardless of its halt or activation state. This makes it possible for EJTAG-based debuggers to
recover from otherwise completely fatal OS errors, such as halting all TCs.

9 Allocating Instruction Bandwidth for Real-time Threads

Consider an embedded system in which two distinct kinds of processing are taking place, real-time decompression of
audio or video data, and operation of a graphical user interface. Using late 20th century technology, this might be
accomplished by using two different processors, a “real time” DSP processor to handle the multimedia data and an
“interactive” core which runs a multitasking operating system with window management, etc. MIPS multithreading
technology would allow these two functions to be performed on the same processor, using VPE multithreading. The
processor or core would be a VMP, where each node would run a different OS and application set, one for media
streaming, the other for the user interface. Using separate threads or VPEs solves the problem of co-existence of two
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different software paradigms, but it does not, on its own, guarantee the real-time performance requirements in the
same way as a dedicated processor.

MIPS MT defines registers which allow scheduling parameters and feedback to be passed between software and
hardware at both the TC and the VPE levels. The ThreadSchedule and VPESchedule registers allow for implementa-
tion-specific per-TC or per-VPE “hints” to be passed to the processor’s scheduling logic, and the ThreadScheFBack
and VPEScheFBack registers allow for implementation-specific scheduler feedback to be likewise provided for each
TC or VPE.

The effects of the VPESchedule and ThreadSchedule register are hierarchical. A thread with a hard real-time require-
ment for 3/4 of a processor’s total issue bandwidth, for example, could be assured of this in a dual-VPE VMP if the
VPESchedule registers assigned 7/8 of the total issue slots to the real-time VPE, whose ThreadSchedule registers in
turn assigned 7/8 of that issue bandwidth to the critical real-time thread.

10 Interaction with Coprocessors and CorExtend UDI Blocks

10.1 Coprocessors

From the principle of scalability, it would seem unreasonable to require that as many coprocessor register sets be
implemented as there are scalar integer TCs. The multithreading scheme needs to accommodate third-party and cus-
tomer-designed coprocessors which may have a single register set, as many register sets as the processor core has
threads, or some number between the two.

The hardware mechanisms by which a coprocessor context is bound to a MIPS MT thread context are implementa-
tion-dependent. As with all MIPS32/MIPS64 processors, the operating system must in any case set the appropriate
per-TC coprocessor usable (CU) bit before instructions targeting the coprocessor may be issued. The act of setting a
CU bit may in itself suffice to perform the context binding, or more elaborate software setup may be required.

If only for diagnostic purposes, it must be possible for software to determine which coprocessor context is bound to a
TC. The mechanisms for doing so are specific to a given coprocessor design, one obvious approach being to provide
distinct per-coprocessor-context values for a specific coprocessor control register.

For the system coprocessor, CP0, all thread-specific system coprocessor information is carried in explicitly thread-
specific registers, and all other CP0 registers are implicitly shared among all threads and protected by the serialization
of exception entry, as described in section 8, and by explicit OS code as necessary.

10.2 CorExtend UDI Blocks

“Pure” CorExtend UDI blocks are unaffected by multithreading, since they operate only on GPRs. A multithreaded
core can and must see to it that the GPRs accessed correspond to the thread whose instruction stream contained the
UDI opcode. Any and all threads may take advantage of a UDI block, and the UDI interface can and should be
extended to allow expected latencies to be signalled to the processor core, to facilitate thread scheduling.

UDI blocks which contain state require special attention. If only a single instance of UDI internal state is imple-
mented, that state is necessarily shared between all threads executing on the associated processor. Unlike coproces-
sors, there is not necessarily a “UDI available” privileged resource that can be set or cleared per-thread, though
implementations may provide this, and are encouraged to do so. Otherwise, it is the responsibility of application soft-
ware to avoid contention for UDI-private resources.
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It is also recommended that the UDI interface to the core be extended to allow an identifier of the issuing thread con-
text to be provided to the UDI block on each UDI instruction issued, so that implementors can build multithreaded
blocks if they choose.

11 32- versus 64-bit Implementations

Wherever necessary, MIPS MT specifies instructions to operate over the size of the implemented register, rather than
over 32 or 64 bits. This allows the same binary code to “do the right thing” on both MIPS32 and MIPS64 cores and
consumes a minimum of decode resources.

12 Gating Storage and Data-Driven Execution

Data-driven programming models map well to multithreaded architectures. For example, threads of execution can
read data from memory-mapped I/O FIFOs, and be suspended for as long as it takes for the FIFO to fill, while other
threads continue to execute. When the data is available, the load completes, and the incoming data can be processed
directly in the load destination register without requiring any I/O interrupt service, polling, or software task schedul-
ing.

However, the base MIPS32/MIPS64 architecture has no provision for restartably interrupting a memory operation
once it has been processed by the MMU. It would thus be impossible for the TC of a blocked thread to be used by an
exception handler, or for an operating system to swap out and re-assign such a TC. MIPS MT therefore introduces the
concept of “Gating Storage”, memories (or memory-like devices) which are distinguished as potentially requiring
abort and restart of loads or stores. The abort/restart capability may require explicit support from the processor/mem-
ory interface protocols.

The MIPS MT ASE provides mechanisms for an operating system to intercept and emulate thread scheduling on
blocking gating storage references. If a per-VPE enable is set, all blocking gating storage loads and stores abort and
trap to the operating system with a designated exception code and subcode identifying a gating storage scheduler
intercept. The operating system can evaluate the global VPE and system state, and make its own determination of
whether the TC contents should be swapped to memory and replaced with the context of another thread of execution.

As in the case of the YIELD scheduler intercept exceptions, gating storage scheduler intercept exceptions are gated
by the per-TC “DT” (Dirty Thread) bit, which is set whenever an instruction is completed for the TC. This allows an
operating system to selectively allow a TC to resume and remain blocked on a gating storage reference after having
taken a gating storage scheduler intercept exception, by clearing the DT bit before having the TC resume execution at
the blocking load or store instruction.

It should be noted, however that, unlike YIELD instructions, loads and stores may occur in branch delay slots. Nor-
mal procedures for restarting after an exception on an instruction in a delay slot would restart on the branch, which
could cause the DT bit to be set prior to the load or store. If it cannot be guaranteed that gating storage references will
never be in branch delay slots, an operating system wishing to allow such a reference to be blocked despite the per-
VPE gating storage scheduler intercept exception being enabled must create a “trampoline” that performs the gating
storage reference, then jumps to the branch target address, and restart the TC to resume execution at the trampoline
after clearing the DT bit.

12.1 InterThread Communications Storage

Inter-Thread Communication” (ITC) storage is a special case of gating storage, and can be thought of as a physical
address subspace with special properties. Each 64-bit location or “cell” within ITC space appears at multiple consec-
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utive addresses, or “views”, distinguished by bits [6:3] of the load/store target address. Each view can have distinct
semantics. The fundamental property of ITC storage is that loads and stores can be precisely blocked if the state and
value of the cell do not meet the requirements associated with the view referenced by the load or store. The blocked
loads and stores resume execution when the actions of other threads of execution, or possibly those of external
devices, result in the completion requirements being satisfied. As gating storage references, blocked ITC loads and
stores can be precisely aborted and restarted by systems software.

This has several motivations.

1. Issue bandwidth is a critical resource on multithreaded processors. Whereas spinning on a lock in a true multi-
processor system wastes only the issue bandwidth of the processor waiting on the resource, in a multithreaded
processor, the act of polling the lock on the resource consumes issue bandwidth needed by the program thread
holding the lock, and further delays the release of the resource. A thread blocked waiting on a value in ITC stor-
age consumes no issue bandwidth until the value is produced or consumed.

2. Using hardware synchronization reduces the overhead of inter-thread control and data exchanges and makes
finer grained parallel computations economical. A well-behaved algorithm running on an optimal implementa-
tion can pass values between threads at the cost of a single pipelined load or store cycle for each thread.

3. It allows a “push model” of multiprocessor/multithread data flow to be implemented in a near-optimal way.

For example, in some views, cells within ITC space may be “Empty” or “Full”. A load from a cell which is Empty
causes the thread issuing the load to be suspended until the cell is written to by a store from another thread. A store to
a cell which is Full causes the thread issuing the store to be suspended until a previous value has been consumed by a
load.

Such ITC storage can define independent Empty and Full conditions, rather than a single Empty/Full bit, in order to
allow for FIFO buffered ITC storage. In a classical Empty/Full memory configuration, Empty would simply be the
negation of Full. A FIFO cannot be both Empty and Full, but it can be neither Empty nor Full if it contains some data,
but could accept more.

While one view could be straightforward empty/full synchronization for producers and consumers, another view
could implement classical “P/V” semaphores. Other views might implement atomic fetch-and-increment or fetch-
and-decrement operations without blocking, etc.

Appendix A of the MIPS MT Specification provides a reference model for an ITC store which supports both Empty/
Full and atomic P/V semaphores, with both blocking and “try” views.

13 Some Software Considerations

13.1 Virtual Multiprocessor

Mainstream operating systems technology understands symmetric multiprocessing (SMP) reasonably well. Several
Microsoft operating systems support SMP platforms, as does Linux. “Multithreaded” applications exist which exploit
the parallelism of such platforms, using “heavyweight” threads provided by the operating system. The VMP model of
the proposed MIPS multithreading ASE is designed to provide maximum leverage to this technology. A multi-
threaded processor, configured as 2 single-threaded VPEs, is indistinguishable to applications software from a 2-way
SMP multiprocessor. The operating system would have no need to use any of the new instructions or privileged
resources defined by the ASE. Only in the case of a dynamically configurable VMP would logic need to be added to
the boot code to set up the various VPEs.
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Each MIPS MT TC has its own interrupt “exemption” bit and its own MMU address space identifier (ASID), which
allows operating systems to be modified or written to use a “symmetric multi-TC” (SMTC) model, wherein each TC
is treated as an independent “processor”. Because multiple TCs may share the privileged resources of a single VPE,
an SMTC operating system requires additional logic and complexity to coordinate the use of the shared resources,
relative to a standard MIPS32/MIPS64 OS, but the SMTC model allows SMP-like concurrency up to the limit of
available TCs.

While the default configuration of multiple VPEs in a MIPS MT processor provides each VPE with an independently
programmable MMU, such that legacy SMP memory management code will work correctly, it is possible for soft-
ware to configure the processor to share MMU TLB resources across all VPEs. This requires a level of coordination
between “CPUs” (really TCs or VPEs) that is not present in legacy SMP operating systems, but allows for an
advanced SMP/SMTC operating system to achieve a more favorable TLB miss rate.

13.2 Master/Slave VPEs

One or more VPEs on a processor may power-up as “master” VPEs, indicated by the MVP field of the VPConf0 reg-
ister. A master VPE can access the registers of other VPEs by using MTTR/MFTR instructions, and can, via the
DVPE instruction, suspend all other VPEs in a processor.

This Master/Slave model allows a multi-tasking master “application processor” VPE running an operating system
such as Linux to dispatch real-time processing tasks on another VPE on behalf of various applications. While this
could be done using an SMP paradigm, handing work off from one OS to another, MIPS MT also allows this to be
done more directly.

A master VPE can take control of another VPE of the same processor at any time. Once a DVPE instruction has been
issued by the master VPE, the slave VPE’s CP0 privileged resource state can be set up as needed using MTTR
instructions targeting TCs that are bound to the slave VPE, the necessary instructions and data can be set up in mem-
ory visible to the slave VPE, one or more TCs of the slave VPE can be initialized using MTTR instructions to set up
their TCRestart addresses (and indeed their GPR register values, if appropriate), and the slave VPE can be dispatched
to begin execution using the configured TCs by the master VPE executing an EVPE instruction.

13.3 Explicit Fine-Grained Multithreading

Finer-grained multithreading can exploit parallelism at levels that cannot be efficiently addressed by heavyweight,
OS-level multithreading. The proposed MIPS multithreading ASE allows threads of execution to be created and
destroyed very inexpensively by user-mode code. This requires that the applications or underlying libraries be explic-
itly built or coded to use the new instructions, of course, but it also requires OS support. No operating system in pro-
duction use today has to deal with the situation where threads of execution, and thus contexts to be saved, can be
created or destroyed without knowledge of the OS.

OS support for the fine-grained, FORK/YIELD parallelism of the proposed ASE would need to include:

• Context switch code which dynamically checks the number of threads to be saved and restored each time a user
task is switched.

• Fault handling code for Thread exceptions, which occur when there is an underflow or overflow of the number of
available physical TCs.

• Allocation and memory management code for ITC storage, if present, as “special” memory.
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If threads at runtime without OS intervention are to be able to take nested exceptions, it is anticipated that the Thread-
Context register value of each TC will be unique and persistent. The OS start-up code would assign context storage
for each TC on a processor, and insert a pointer to it into that thread’s ThreadContext register prior to that thread’s
being made available for FORK allocation.

13.4 Automatic Fine-Grained Multithreading

Automatic parallelization algorithms can be employed in compilers to generate multithreaded code. This technique is
the ultimate means by which a single C or Fortran program can be accelerated in terms of execution “clock time”.
The necessary compiler techniques exist in the research and high-performance computing communities. They would
need to be adapted to MIPS, and used in conjunction with the OS support described above for explicitly fine-grained
multithreading.

13.5 “Virtualization” of Threads and Hybrid Scheduling

If more software threads are active in a system than TCs are available in a MIPS MT VPE, it is necessary to impose a
layer of software scheduling on top of the hardware thread scheduling policy of the processor. MIPS MT contains
architectural hooks to support this “virtualization” of threads.

As noted in section 5.1, a FORK instruction when no dynamically allocatable TCs are free to accept the new instruc-
tion stream will cause a thread overflow exception, which allows an operating system to detect the case of more soft-
ware than hardware threads in systems where user-mode thread creation is allowed. If software threads are created
only by the OS, the OS will of course be able to track the available resources without need for an exception.

So long as the number of software threads does not exceed the TC resources available, it is of no consequence from
the standpoint of system performance whether a TC remains blocked on a qualified YIELD or a gating storage
access, but when TCs are saturated, it becomes necessary to multiplex the software threads across the available TCs.
This can be achieved using simple scheduling algorithms that time-slice threads, regardless of whether or not they are
making forward progress, but for high efficiency, it is highly desirable to use blockages as an opportunity to schedule
other software threads. MIPS MT provides the option for a VPE to take an exception whenever a YIELD could cause
a rescheduling or whenever a gating storage access blocks.

If blockages will generally be of a short duration, generating exceptions on each blockage may not be desirable, and
it may be better to allow TCs to be blocked for some period of time before swapping out their contents. An operating
system can do this by periodically sampling and clearing the “dirty” bit associated with each TC, which is set when-
ever the state of the TC is modified by instruction execution. If the dirty bit remains clear after a sample interval, it
may be deduced that the TC has been blocked for the full interval.

If blocked threads are being swapped off of TCs because a of an unsatisfied YIELD qualifier or an unready gating
storage location, it is of value to the operating system to know when that situation has changed, so that the thread can
be swapped back onto a TC intelligently. While the MIPS MT architecture does not provide for this explicitly, it can
be done straightforwardly with an appropriate system design. Because these gating events may be asynchronous to
any instruction stream, they are most simply modeled as interrupts. YIELD qualifier inputs may simply be connected
to maskable interrupts, and gating storage controllers can provide maskable interrupts that are asserted when a trans-
action has completed that might have unblocked a thread.

Context switching of one TC by another is possible using MFTR/MTTR instructions, but for loading/storing contexts
in memory, MFTR/SW and LW/MTTR pairs are only half as efficient as a TC marshalling its own contents using
sequences of loads and stores its own registers. That operation can be imposed by one TC on another by Halting the
TC to be swapped, extracting its ThreadStatus and TCRestart values with MFTR instructions, setting its ThreadStatus
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TKSU bits to allow kernel mode execution and writing the address of the appropriate context switch code (which
knows where to find the ThreadStatus and TCRestart values) into its TCRestart with MTTRs, then un-Halting the TC.

13.6 Software Security

If dynamic FORK/YIELD thread creation and resource allocation is in use simultaneously in different security
domains, i.e. by multiple applications or by both an OS and an application, there can be a risk of information “leak-
age” in the form of register values inherited by an application. It is the responsibility of a secure operating system to
manage this risk. MIPS MT provides one simple mechanism to facilitate this task, a “dirty” bit associated with each
TC, which can be cleared by software and which is set whenever the context is modified. An OS can initialize all TCs
to a known “clean” state, and clear all associated dirty bits, prior to scheduling a task. On a task switch, those TCs
which are dirty must be “scrubbed” to the clean state before another task can be allowed to allocate and use them.

If a secure operating system wishes to make use of dynamic thread creation and allocation for privileged service
threads, the associated TCs must be scrubbed before they are freed for potential use by applications.

MIPS MT provides no mechanisms which would allow a guarantee that two independent, untrusted tasks running
concurrently on the same VPE and executing FORK and YIELD instructions, will not exchange TC storage, and thus
register values. Programs which cannot “trust” one another should be run on distinct VPEs.

13.7 Manipulation of Dynamic Allocation Properties of TCs

Each TC has an associated DA bit which makes it available for dynamic allocation by FORK instructions. The inter-
actions of FORK and YIELD with the set of DA bits makes possible several TC management algorithms. Interrupt-
exempt real-time threads may have the DA bit of their associated TC cleared so that a YIELD 0 of the last dynami-
cally allocated thread will cause an underflow Thread exception on the YIELDing thread without perturbing the real-
time thread execution, and without leaving the processor in a state where no interrupt-capable TCs are active.

In response to an overflow Thread exception on a FORK, where no more DA TCs are available, the OS can, after
having saved a copy of the previous values, clear the DA bits of all TCs, so that the next YIELD 0 will cause an
underflow Thread exception which can be used by the OS to restore DA bits and schedule a replay of the failed
FORK.

It is possible to construct asymmetric “master/slave” applications, where a designated persistent thread FORKs
worker threads, which terminate with a YIELD 0 when their work is completed. While it is not strictly necessary for
the master thread to run on a DA TC to perform the FORKs, if only slave threads are running on DA TCs, then a
Thread underflow exception will occur each time the system runs out of work to do and the last slave thread termi-
nates. If this exception is not desired, the master thread should be run on a DA TC, ensuring that there is at least one
DA TC active, and there will be no underflow.

14 Run-time Configuration of Threads and VPEs

So long as each application of a multithreaded MIPS core will have its own layout and IC mask set, design engineers
have the option to pre-determine how many threads need to be assigned to however many VPEs are required to fit the
software model of the target system. In order to allow a single mask set and thus a single component to be used across
a wide range of applications, however, the proposed MIPS multithreading ASE includes an option to provide VPE
configuration by software. These mechanisms allow the same physical core to be configured as multiple or single
VPEs, each with one or more threads. A single core design could be used as a SMP multi-VPE platform in the near
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term, but still be able to benefit from fine-grained multithreading techniques at a later date, with an upgrade to the
boot code, OS, and, of course, the application code.

“Master” VPEs as described in section 13.2 can enable VPE reconfiguration by setting the VPC bit of the MTConfig
register. While the VPC bit is set, VPE parameters can be changed by writing to some Config0-3 and VPEConf1 reg-
ister fields that are otherwise preset or read-only. Clearing the VPC bit latches the new configuration.
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