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1. Introduction 
Visualization of large datasets is a complicated and demanding task. Efficient techniques have to be 
employed in order to achieve interactive frame rates when rendering huge datasets. The first 
document on this topic (please see the “PowerVR™ Navigation Rendering Techniques” document) 
dealt with the aspects of 2D and 2.5D map rendering.  
This document introduces techniques related to the visualization of 3D datasets. It provides additional 
information on the topics of optimization, extending those found in the “PowerVR 3D Application 
Development Recommendations” document. 

1.1. Point-of-view types 
There are several high-level approaches to rendering a navigation system. They mainly differ in the 
point of view and the amount of detail being rendered. From a different perspective this means they 
differ in the minimum hardware specs they require from the targeted device to be able to run at an 
appealing framerate. The following gives an overview of the most common types: 

• 2D top-down: the standard bird’s-eye perspective found in a lot of navigation devices. It 
features a very limited field of view, concentrating on basic features like streets, signs and 
landmarks and can be rendered using an orthographic projection scheme. 
The terrain and all the landmarks are specified in a single plane. 

• 2.5D: this perspective shares the same set of features with the plain 2D one, but the camera 
is slightly tilted to offer a wider field of view. Due to the viewing angle and the perspective 
projection, artefacts like line-aliasing have to be considered. Furthermore it is desirable to add 
3D models of important buildings to provide reference points for the user. 
As with the previous view all the landmarks are specified in a single plane. 

• 3D: this view is similar to the 2.5D view, but now all coordinates have an additional z-
coordinate which makes it possible to illustrate additional landscape features like elevation. 
In addition to the 3D coordinates, the map data can be augmented by enhanced features like 
3D models of the actual city buildings. 

 

This document covers the last entry in the list, on how to efficiently render 3D city models. 

1.2. Sample data 
The sample data used throughout the 3D navigation demo has been kindly provided by NAVTEQ.  

In particular, sample data from NAVTEQ Enhanced 3D City Models for Chicago, provided in the 
Collada™ interchange format, was used and transformed into Imagination Technology’s binary POD 
format, which in turn was used for the 3D navigation demo. The city models are split into tiles of 
approximately 400m by 400m side length, where each tile is stored as a separate POD file. Each tile 
contains textured buildings, roads and bridges, which resemble the original city. 

The following sections describe the optimization techniques used for the demo and the sample data. 
Implementations of the algorithms and techniques can be found in the PowerVR SDK (see section 5) 
and an explanation of the various navigation data tools used to convert the sample data can be found 
in section 4. 
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2. Data Organisation 
Rendering the 3D models out-of-the-box as they are delivered is not possible. The models themselves 
are stored in the Collada interchange format, which is primarily used as a standardized storage format 
for data exchange between authoring software packages.  

The format itself is a human-readable XML format which is not meant for deployment. It includes meta 
data which is not required for the rendering process and the file size itself is a multiple of comparable 
binary deployment formats.  

As the models have to be deployed to mobile platforms, the data set has to be reduced to the bare 
minimum. Deployment size matters due to limited storage and slower transmission speeds so the 
data is better in an efficient binary format which is fast to load. The PowerVR SDK provides a set of 
tools that accomplish these tasks. 

The next section will introduce a few of these tools and how they can be used to compile and 
generate the required deployment content. The later sections deal with the process of generating 
spatial index data to accelerate the rendering process. 

2.1. Data conversion 
As already mentioned in the section introduction the Collada file format is not suitable for rendering 
the data out-of-the-box. The data has to be converted into the PowerVR POD file format for 
deployment. The PowerVR SDK includes a set of tools to accomplish this task: 

• PVRGeoPOD, a plug-in for Autodesk 3ds Max 6, 7, 8 & 9 and Autodesk Maya 7 & 8. It 
exports model data into the optimized PowerVR POD file format; also it supports special 
features, such as tangent space generation and bone batching. This tool can be used if you 
have to modify models in a 3D authoring package instead of directly using the source data. 

• PVRGeoPOD Standalone, a standalone tool that converts Khronos COLLADA Digital Asset 
geometry and animations into the optimized PowerVR POD file format. This tool comes in two 
flavours, a GUI version and a command line version, which can be easily integrated into 
content pipelines. 

 
In the 3D navigation demo the data has been converted1, using the vertex, normal and texture 
coordinate information stored within the Collada file, almost halving the file size in most cases. The 
transformation process is depicted in the following illustration: 
Once the data has been transformed into the POD file format, the PowerVR SDK can be used to read 
and process those POD files (see the PowerVR SDK documentation for more information). 

2.2. Spatial index 
After converting the data into the PowerVR POD deployment format, it can be easily loaded and 
rendered in any 3D application. Unfortunately the city model data set itself proves to be very complex 
and rich in detail so that further steps have to be taken in order to reduce the amount of rendered 
geometry. 

Although the PowerVR tile based deferred rendering architecture (TBDR) applies various techniques 
to optimize rendering, such as reducing the amount of overdraw per pixel to a bare minimum, 
geometry bandwidth will be the limiting factor as all of the geometry has to be sent to the GPU. It is 
therefore crucial to only actually submit geometry which is visible from the camera’s point-of-view. 

The easiest optimization is to generate an additional set of data, that logically augments the 3D model 
set. For every city model tile the 2D bounding box coordinates are calculated and stored in a separate 
file, the spatial index, which then can be used to efficiently cull the tile’s bounding box against the 
camera view frustum (see Figure 1, the light blue lines represent the tiles’ bounding boxes).  

                                                      
1 Using Collada2Pod with the following options:  

-Indexed=1 -Interleaved=1 -ExportGeometry=1 -ExportMaterials=1 -ExportNormals=1 -PrimitiveType=TriList -PosType=float 
-NorType=float -UVW0Type=float 
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Figure 1 City tiles intersecting the view frustum 

 

As can be seen in the example scene in Figure 1 the amount of geometry that has to be rendered 
seems to be manageable due to the view frustum culling (the view frustum is depicted with light and 
dark green lines in the figure), but still almost contains 500 000 vertices which would have to be sent 
each and every frame to the GPU. 

Another optimization is to extend the culling from a tile basis to a per-object basis. Instead of 
rendering each building within each intersected tile, test each building against the view frustum. The 
spatial index is therefore augmented with each object’s bounding box which can be used for the 
enhanced detailed view frustum culling.  

The whole rendering procedure then can be rephrased to: if a tile is intersecting the view frustum, test 
each object within that tile against the view frustum and only render an object if it is itself intersecting 
the view frustum. 
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Figure 2 Working set and per-object culling 

 

As Figure 2 illustrates, the amount of geometry that has to be rendered has been vastly reduced. Now 
only objects actually lying within the view frustum have to be rendered. The amount of vertices in this 
example has been reduced to approximately 250 000 vertices from 500 000 vertices without any 
visual difference. 

It has to be noted though that these optimizations are not completely free, as we have to calculate on 
the CPU whether a bounding box intersects the view frustum or not. It is advised that a hierarchical 
data structure shall be used for the bounding boxes (see the section about quad-trees in the first 
navigation whitepaper) to gain a more efficient culling performance. 

2.3. Occlusion culling 
Applying simple optimization techniques vastly reduced the amount of geometry that has to be 
processed by the GPU, as can be seen in Figure 1 and Figure 2. Nonetheless, having a closer look at 
a screenshot from the 3D Navigation demo (see Figure 3) and comparing it against a screenshot from 
a bird’s eye view (see Figure 2) it can be noticed that some of the geometry is not visible from the 
camera’s point of view. 

 

 
Figure 3 View of the Chicago city model as rendered from the demo application 
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Some of the buildings are occluded by buildings near to the camera. Having a closer look at a 
wireframe rendering of the same viewpoint reveals that a lot of geometry has been submitted to the 
GPU that does not actually contribute to the final image.  

Figure 4 illustrates the geometry which has been sent to the GPU as red overlaid lines over the actual 
image. As can be seen on the upper image this amounts to a huge amount of redundant geometry, 
whereas applying an occlusion culling technique reduces the amount of geometry even more. 

 

 
Figure 4 Combine wireframe and shaded views of the geometry 

 

 

Occlusion culling is a very popular technique to speed up the rendering of large scenes that have a 
high depth complexity. The particular technique employed in the 3D Navigation demo is generally 
known as Portal Visibility Sets (PVS), in which the scene is divided into regions that contain an index 
list of visible objects from that particular region. At runtime this index is then sampled and each visible 
object successively rendered. 

As the bird’s eye view in Figure 5 illustrates the amount of geometry has been dramatically reduced: 
the number of triangles in this particular viewing position went from approximately 90 000 to 16 000. 
Note that as the index list contains all viewing directions from a particular point of view, objects behind 
the camera are included in the rendering process.  
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Figure 5 Visibility set determined by camera position 

 

To further optimize the rendering procedure view frustum culling can be employed on a per object 
basis which almost halves the amount of geometry in the particular example (see Figure 6). After 
determining the set of visible objects from the index (which includes all objects from an omni-
directional point of view) each object’s bounding box is tested against the camera view frustum and 
only rendered if it falls within or intersects the frustum. 

 
Figure 6 Visibility set and per-object frustum culling 
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3. Rendering Techniques 
The previous section dealt with preliminary steps on how to reduce the actual data that needs to be 
sent to the GPU for efficient rendering. This section is about techniques on how to add visual fidelity 
and further improve performance from a technical point of view.  

3.1. Skybox 
A very simple technique to add a lot of realism to outdoor scenes is to include a skybox in the 
rendering process. The Skybox2 demo and the code in the 3D Navigation demo in the PowerVR SDK 
demonstrate on how use the PowerVR tools to implement a simple but convincing skybox. 

 

      
Figure 7 Comparison of a scene with a black background (left) and a skybox (right) 

 

As Figure 7 illustrates the skybox changes the whole mood of the resulting image. Skyboxes can be 
changed depending on the time of day, the weather, the geographic location of the user and many 
more conditions by simply exchanging the skybox texture.  

From a performance point of view, due to the Tile Based Deferred Rendering architecture in PowerVR 
GPUs and the implicit hidden surface removal, no special measures have to be taken in the rendering 
process to efficiently render the skybox. 

3.2. Shadows 
One of the most important visual cues for the human perception system is shadows. Without shadows 
virtual objects are difficult to locate in a three dimensional space and seem to hover. It is even more 
difficult to establish spatial relationships between objects. 

 

      
Figure 8 Comparison of a scene without (left) and with (right) shadows 

 

As Figure 8 illustrates the addition of shadows add a lot of depth to the final image. 
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The particular shadow technique employed in the 3D Navigation demo is known as “stencil shadow 
solumes”. A reference implementation can be found in the PowerVR SDK training course 
ShadowVolume as well as in the 3D Navigation demo.  

The abstract concept behind the stencil shadow volume algorithm is to determine shadowed and lit 
surfaces by counting the number of volumes (see Figure 9) that are visible between the camera’s 
point of view and the geometric surfaces that are visible. The volumes are generated by extruding 
geometry along the light direction. For a more in-depth description of the stencil shadow volume 
algorithm and recommended reading see Reference Material & Contact Details later in this document. 

 

 
Figure 9 Visualization of the extruded shadow volumes 

 

After determining the shadowed areas in image space they are multiplied by a scalar in the [0-1] 
range, effectively darkening them. This is not an accurate physical representation of real light 
interaction but provides a quite convincing effect with very good performance. 

The shadow volume performance is highly dependent on the geometric detail of the shadow casting 
model, but another optimization which can be found in the 3D Navigation demo is to simply take a low 
polygonal representation of the shadow casting object. In case of the demo it is just the bounding box 
of each individual object, which can cause artefacts concerning the shape of the shadow, but which 
are barely visible during runtime. The shadow volume extrusion itself is then handled by an easy to 
use set of tools provided by the PowerVR SDK. 

3.3. Batching 
Another very important technical aspect besides the geometric management of the scene is the 
internal representation for rendering. For example it is recommended to draw as many primitives as 
possible with as few API calls as necessary (for a comprehensive list and explanation of 
recommendations please see the development recommendations whitepapers in the PowerVR SDK). 

In order to achieve good runtime performance it is recommended to make use of vertex (VBO) and 
index (IBO) buffer objects: in the demo during the initialization phase every model in a city block is 
merged into a single index and vertex buffer object, which in turn only needs to be bound once frame.  

The individual indices are offset to match the new vertex positions in the unified vertex buffer. 

Each individual object can then be rendered by simply using the bound vertex and index buffer 
objects and specifying an offset into the index buffer (see Figure 10) when drawing with 
glDrawElements. This minimizes the amount of necessary API calls for binding vertex and index 
buffer objects but still keeps the flexibility of dynamically loading and unloading city blocks during 
runtime. 
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Figure 10 Hierarchical overview of vertex (VBO) and index (IBO) buffer objects for a city block 

 

4. Tools 
Two new tools have been implemented to generate the additional data that is required for accelerated 
culling against the view frustum (see subsection 4.1) and the Portal Visibility Sets (see subsection 
4.2). The NAVTEQ 3D Enhanced City Model data has been converted into the PowerVR POD format 
and will be used as input for the following tools. 

4.1. 3dSceneCompiler 
The 3dSceneCompiler creates the hierarchical index of all models found in a city block. A city block 
represented in the Collada interchange format consists of a list of individual models (or entities) which 
in most cases define a child- parent-node relationship, e.g. multi-storey buildings are often 
represented as separate basement, storeys and roof nodes referencing the same parent node. 

It creates an index for all child-parent node relationships to ease the access of individual buildings, 
which optimizes the view-frustum culling process, as buildings can be culled as a whole instead of 
their individual nodes. 

 

 
Figure 11 File format for the model index generated by the 3dSceneCompiler 

 

Furthermore it calculates the bounding box for each individual level of detail, creating bounding boxes 
on city block and parent node level. 

As input the tool itself requires a textual description file that contains a list of city block files (please 
see the example file in the source package). It will write the model index into a specified file; an 
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additional option is to specify another filename where the referenced texture filenames from each city 
block will be written to. This has been used to only include the required textures for the 3D Navigation 
demo to reduce its footprint. 

4.2. OcclusionCalculator 
The OcclusionCalculator tool calculates the Portal Visibility Set mentioned in section 2.3.  

It creates a set of viewpoints to calculate the visibility information for and then renders the scene from 
each of these viewpoints in all six directions (up, down, left, right, front and back). In order to calculate 
the visibility results two methods requiring different levels of hardware support have been 
implemented and will be explained in the following sections.  

 

 
Figure 12 File format for the occlusion data generated by the OcclusionCalculator 

 

The visibility result of each viewpoint is then merged into a visibility set and stored to a file that can be 
used to index objects. At runtime the index is then queried for the nearest visibility information data 
point and the list of objects found at that location rendered.  

4.2.1. Occlusion Queries 
Occlusion queries are a very fast way to count the number of pixels an object takes up when being 
rendered. It requires OpenGL hardware support and comes in two flavours: the first always renders 
the whole object and counts the total amount of pixels that end up in the framebuffer whereas the 
other simply reveals if at least one pixel ends up in the framebuffer. The latter is the newer one and 
not every hardware supports it at the time of writing, therefore both methods have been implemented 
and the appropriate one picked at runtime. 

As no colour data is required for the analysis, framebuffer writes have been disabled by setting the 
colour mask (glColorMask). In the first pass the whole scene is rendered into the depth buffer. In the 
second pass each individual object is rendered again, but this time the depth test is set to only pass 
objects which are nearer or equal to the depth buffer content (GL_LEQUAL). Each object has been 
allocated a unique occlusion query id and it will be set before rendering the object in the second pass.  

After finishing the second pass it is possible to read back the result of the occlusion query for each 
object, which reveals whether an object is visible in the current view or not. 

4.2.2. Framebuffer read-back 
The framebuffer read-back method is used as fallback method when occlusion queries are not 
supported by the hardware. For rendering each individual object is assigned a unique custom colour 
which encodes the object and city block id. The scene is then rendered from the current viewpoint 
using depth buffering.  

After the render is complete the framebuffer is read back (glReadPixels) and visible objects 
determined by analysing each pixel of the framebuffer. 
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5. Reference Material & Contact Details 
Overview about spatial partitioning schemes on Wikipedia: 

 
 http://en.wikipedia.org/wiki/Space_partitioning 

 

PowerVR Public SDKs can be found on the PowerVR Insider section of the Imagination Technologies 
website: 

 

http://www.powervrinsider.com 

 

Further Performance Recommendations can be found in the Khronos Developer University Library: 

 

http://www.khronos.org/devu/library/ 

 

Developer Community Forums are available: 

 

http://www.khronos.org/message_boards/ 

 

Additional information and Technical Support is available from PowerVR Developer Technology who 
can be reached using the following email address: 

 

devtech@imgtec.com 

 

Navigation data kindly provided by NAVTEQ: 

 

http://www.navteq.com/ 

 

Stencil Shadow Volumes (Wikipedia): 

 

http://en.wikipedia.org/wiki/Shadow_volume 
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