
 Proprietary Imagination Technologies

Post Processing Effects 1 Revision .

Post Processing Effects

Whitepaper

Copyright © Imagination Technologies Ltd. All Rights Reserved.

This publication contains proprietary information which is subject to change without notice and is
supplied 'as is' without warranty of any kind. Imagination Technologies and the Imagination

Technologies logo are trademarks or registered trademarks of Imagination Technologies Limited. All
other logos, products, trademarks and registered trademarks are the property of their respective

owners.

Filename : Post Processing Effects.Whitepaper.1.0.3.External.doc

Version : 1.0.3 External Issue (Package: POWERVR SDK REL_3.0@2149525)

Issue Date : 30 Aug 2012

Author : Imagination Technologies Ltd

Imagination Technologies Proprietary

Revision . 2 Whitepaper

Contents
1. Introduction ...3

2. Post Processing Overview...4
2.1. Basics ...4
2.2. Technical details ...4

3. Post Processing Training Course: Bloom..7
3.1. Bloom..7
3.2. Implementation ...8

3.2.1. Resolution ..8
3.2.2. Convolution ..10
3.2.3. Blending..11

4. Reference Material & Contact Details ...13

List of Figures
Figure 1 Sepia colour transformation..3
Figure 2 Radial twist..3
Figure 3 Depth of Field..3
Figure 4 Depth of Field and Sepia colour transformation ...3
Figure 5 Image input and output ...4
Figure 6 Image input and output chain ...4
Figure 7 Gaussian Blur filtering example ..5
Figure 8 Post Processing steps and frame buffer IDs ..6
Figure 9 Tron 2.0 character without and with glow (source: Gamasutra.com).......................................7
Figure 10 Applying a high pass filter to obtain bright parts...7
Figure 11 Applying Gaussian blur ...8
Figure 12 Additive blending of original and blurred high pass filtered image ...8
Figure 13 Difference between non-textured (left) and textured (right) bloom...9
Figure 14 High pass filtering the brightness scalar by doing a texture lookup in an intensity map9
Figure 15 Blurring the input image in a low resolution render target with a separated blur filter kernel
..10
Figure 16 Reducing the amount of texture lookups by using hardware texture filtering.......................11
Figure 17 Overview of the separate Bloom steps...11
Figure 18 Bounding box derived rectangle (red) used for final blending ..12

 Proprietary Imagination Technologies

Post Processing Effects 3 Revision .

1. Introduction
Post-processing is the modification and manipulation of captured or generated image data during the
last stage of a graphics pipeline, resulting in the final output picture.

Traditionally, these operations were performed by the host system CPU by reading back the input
image data and altering it. This is very costly in terms of performance and is not suitable for
applications that require interactive frame rates on mobile platforms. A more recent and practical
approach is to use the processing power of the graphics hardware to do the image data manipulation.

Figure 1 Sepia colour transformation Figure 2 Radial twist

Due to the ever increasing performance of graphics hardware, post processing effects are now quite
common in video games. Depending on the power of the graphics accelerator that is available to the
developer, the set of post processing effects can range from simple colour transformations and over
image distortions, to complex depth of field computations (see examples in Figures 1, 2, 3 and 4).

Figure 3 Depth of Field Figure 4 Depth of Field and Sepia colour
transformation

This document describes a general approach to post processing and provides an example of a real-
time effect that can be implemented for mobile platforms utilising POWERVR SGX hardware.

The remaining chapters of this document provide the following information:

• Chapter 2 explains the common basic technique behind post processing effects.

• Chapter 3 offers a more detailed explanation based on a real example.

• Chapter 4 contains references to recommended reading material.

Imagination Technologies Proprietary

Revision . 4 Whitepaper

2. Post Processing Overview

2.1. Basics
Oversimplified, the general idea behind post processing is to take an image as input and generate an
image as output (see Figure 5). You are not limited to only using the provided input image data, as
you can use any available data source, such as depth and stencil buffers, as additional input for the
post processing step. The only requirement is that the end result has to be an image.

Figure 5 Image input and output

One direct advantage of this approach is that, due to the identical basic format of input and output, it
is possible to chain post processing techniques. As illustrated in Figure 6, the output of the first post
processing step is reused as input for the second step. This can be of course combined and repeated
with as many post processing techniques as required.

Figure 6 Image input and output chain

Each steps is performed in a frame buffer object and makes intensive use of render to texture
mechanisms. The final image will be considered as output and displayed on the screen.

2.2. Technical details
As mentioned in the previous section, one of the most basic techniques used is render to texture.
There are other ways of accomplishing the same results, such as creating textures from frame buffer

 Proprietary Imagination Technologies

Post Processing Effects 5 Revision .

content, but they are not recommended from a performance point of view (for a more detailed
discussion see the “3D Application Development Recommendations” document, available in the
documentation folder of the POWERVR SDK).

Another requirement is the availability of pixel shader support, as found in the POWERVR SGX
graphics cores, as it provides a great deal of flexibility when developing post processing effects. It is
possible to implement some of the post processing techniques with a fixed function pipeline, but this
is beyond the scope of this document.

The basic algorithmic steps for a post processing effect are as follows:

1. Render the scene to a texture

2. Render a full screen pass using a custom pixel shader to apply the effect

3. Repeat step two until all effects are processed

The first step is the most straight-forward one, as it simply requires setting a different render target.
Instead of rendering to the back buffer, you can create a frame buffer object (or render target in
DirectX) of the same dimensions as your frame buffer. In the case that the frame buffer dimensions
are not a power of two (e.g. 128x128, 256x256 etc), you must check that the graphic hardware
supports non power of two (NPOT) textures. If there is no support for NPOT textures, you should
allocate a power of two frame buffer object that is larger than the frame buffer.

In stage two, the texture acquired during stage one can be used as input for the post processing. In
order to apply the effect, a full screen quad must be drawn using a post-processing pixel shader to
apply the effect to each pixel of the final image.

All of the post processing is executed within the pixel shader, for example, in order to apply an image
convolution filter, neighbouring texels have to be sampled and modulated to calculate the resulting
pixel. Figure 7 illustrates the kernel, which can be seen as a window which is sliding over each line of
the image and evaluating each pixel at its centre by fetching neighbouring pixels and combining them.

Figure 7 Gaussian Blur filtering example

Step three describes how easy it is to build a chain of post processing effects by simply executing one
after another, using the output of the previous effect as the input for the next effect. In order to
accomplish this, it is necessary to allocate more than one frame buffer object as it is not possible to
simultaneously read from and write to the same texture.

Figure 8 illustrates the re-use of several frame buffer objects:

• The initial step renders to the frame buffer object with ID 1

• The second step renders to the frame buffer object with ID 2, using the previous frame buffer
object as input.

• The whole procedure is repeated for steps three and four, but instead of using frame buffer
object 2 again for the last step, the back buffer is used as the final result shall be displayed on
the screen.

Imagination Technologies Proprietary

Revision . 6 Whitepaper

Figure 8 Post Processing steps and frame buffer IDs

Depending on the individual effect, some of the illustrated passes may be merged into one pass, as
the cost of processing the whole image data is quite severe.

 Proprietary Imagination Technologies

Post Processing Effects 7 Revision .

3. Post Processing Training Course: Bloom
The whole concept of post processing, as presented in the previous chapter, is suitable for high
performance graphics chips in the desktop domain. In order to get them up and running on mobile
graphics chipsets, such as POWERVR SGX graphics cores, it is most important to act with caution.
The contents of this chapter illustrate an actual implementation of the Bloom effect tailored towards
the low end configurations of the POWERVR SGX platform running at an interactive frame rate. The
required optimizations and alterations to the original algorithm are explained throughout the following
chapters. The Bloom training course containing the source code can be found in the POWERVR
SDK.

At the beginning of this chapter the effect itself will be explained, followed by the actual
implementation and concluded by general performance guidelines.

3.1. Bloom
The Bloom effect simulates the perception of bright light in our eyes, by producing a subtle glow and
halo around bright objects. Furthermore it gives the impression of high dynamic range rendering
although the rendering is done in a low dynamic range. Another useful side effect is that it reduces
aliasing artefacts at the edges of objects due to the slight glow. The whole effect and its intensity can
be controlled and used by artists to make objects stand out of the scene or amongst other objects
(e.g. see Figure 9).

Figure 9 Tron 2.0 character without and with glow (source: Gamasutra.com)

The Bloom effect is achieved by intensifying bright parts of the image. In order to accomplish this, the
bright parts of the image have to be identified. This can either happen implicitly by applying a high-
pass filter to the input image to extract the bright parts (see Figure 10) or explicitly by specifying the
glowing parts through a separate data source, e.g. the alpha channel of the individual textures.
Furthermore the latter can be employed to animate the glow, e.g. doing a simple pulse.

Figure 10 Applying a high pass filter to obtain bright parts

The high pass filtered texture, which contains the bright parts of the image, will then be blurred with a
convolution kernel in the next step. The weights of the kernel used in this example are chosen to
resemble the weights of the Gaussian blur kernel. The kernel itself is applied by applying a full shader
pass over the whole texture and executing the filter for each texture element. Depending on the
amount of blur iterations and the kernel size, most of the remaining high frequencies will be eliminated

Imagination Technologies Proprietary

Revision . 8 Whitepaper

and a ghostly image will remain (see Figure 11). Furthermore, due to the blurring, the image is
consecutively smeared and thus enlarged, creating the halos when combined with the original image.

Figure 11 Applying Gaussian blur

The final step is to additively blend the resulting Bloom texture over the original image by doing a full
screen pass. This brightens the already bright parts and produces the halo around glowing objects
due to the blurring of the high pass filtered texture.

Figure 12 Additive blending of original and blurred high pass filtered image

The final amount of Bloom can be controlled by changing the blend function from additive blending to
an alpha based blending function, giving even more artistically freedom. Again this alpha value can be
used to animate the amount of bloom, e.g. to simulate a pulsing light.

3.2. Implementation
The Bloom algorithm presented in the previous chapter describes the general approach one might
implement when processing resources are not very limited. Two full screen passes for high pass
filtering and final blending and several passes for the blur filter in the most naïve implementation are
very demanding even for the fastest graphics cards.

Due to the nature of mobile processing environments, serious adjustments to the original algorithm
have to be made in order to get it running on low profile hardware, even when paired with a highly
efficient POWERVR SGX core.

The end the result has to look convincing and be able to be run at interactive frame rates. Thus most
of the steps illustrated in chapter 3.1 have to be modified in order to meet the resource constraints.
These alterations will be presented in the following subsections.

3.2.1. Resolution
One of the most critical limitations of mobile hardware graphics chipsets is the relatively low clock
frequency available for processing. Although the POWERVR SGX cores implement a very fast tile
based deferred rendering approach, they are not designed for full screen post processing effects.

 Proprietary Imagination Technologies

Post Processing Effects 9 Revision .

Thus, the first and most important optimisation is to do the necessary calculations at a reduced
resolution whenever possible, sacrificing image quality in favour of performance, but still producing
convincing results.

Figure 13 Difference between non-textured (left) and textured (right) bloom

For this training course the resolution of the frame buffer object for the blurred texture was set to
128x128 (width x height), which has shown to be sufficient for high-resolution QVGA (320x240)
displays. Depending on the target device’s screen 64x64 might be even adequate; the individual
result has to be checked when running on the targeted device. It should be kept in mind that using
half the resolution (e.g. 64x64 instead of 128x128) means a reduction of pixels being processed by 75
percent.

As the original image data is not being reused due to the reduced resolution, the objects using the
bloom effect have to be redrawn. This circumstance can be reused for another optimization. As we
are only drawing the objects which are affected by the bloom, it is possible to calculate a bounding
box enclosing these objects which in turn will be reused in the following processing steps as a kind of
scissor mechanism.

Figure 14 High pass filtering the brightness scalar by doing a texture lookup in an intensity
map

When implementing the first part of this algorithm by drawing the objects to the frame buffer object,
one could take the optimization even a bit further and completely omit texture mapping (see Figure
13). This means that the vertex shader only calculates the vertex transformation and the lighting
equation, which reduces the amount of data being processed in the fragment shader even further. On
the other hand the resulting glow will be monochromatic and it has to be evaluated for each different
case if the performance gain is worth the visual sacrifice.

The scalar output of the lighting equation represents the input data for the blur stage, but if we simply
used this for the following steps the resulting image would be too bright, even in the darker regions of
the input image. This is why the high pass filter has to be applied. This can be achieved by doing a
texture lookup into a 1D texture, representing a direct mapping of luminance values to high pass
filtered luminance values (see Figure 14). This texture can be generated procedurally by specifying a
mapping function or manually, where the amount of bloom can be stylized to meet artistically needs.

After the rendering of the objects to the lower resolution frame buffer object and the high-pass filtering
of the output, the resulting image can be used as input for the blur filtering steps.

Imagination Technologies Proprietary

Revision . 10 Whitepaper

3.2.2. Convolution
After generating the initial bloom texture we have to filter and blend it over the existing back buffer
content. This section explains the blur filtering methods which are depicted in Figure 15.

Figure 15 Blurring the input image in a low resolution render target with a separated blur filter
kernel

Image convolution is a very common operation and can be executed on the GPU very efficiently. The
naïve approach is to calculate the texture coordinate offsets (e.g. 1 / width and 1 / height of texture
image) and sample the surrounding texels. The next step is to combine these samples by applying
either linear filters (Gaussian, Median, etc.) or morphologic operations (Dilation, Erosion, etc.).

In this case we apply a Gaussian blur to smooth the image, which falls into the category of linear
filters. Depending on the size of the filter kernel we have to read a certain amount of texture values,
multiply each of them by a weight, sum the results and divide by a normalization factor. In the case of
a 3x3 kernel this results in nine texture lookups, nine multiplications, eight additions and one divide
operation, which is a total of twenty-seven operations to filter a single texture element. The
normalization can be included in the weights, reducing the total operation count to twenty-six.

Fortunately the Gaussian blur falls into the subcategory of separable filters, which means that the filter
kernel can be expressed as the outer product of two vectors:

Making use of the associativity

where t represents the texel, v the column and h the row vector, we can first apply the vertical filter
and in a second pass the horizontal filter, or vice versa. This results in three texture lookups, three
multiplications and two additions per pass, giving a total of 16 operations when applying both passes.
This reduction of operations is even more dramatic when increasing the kernel size (e.g. 5x5, 7x7,
etc.):

Kernel Texture Lookups Multiplications Additions Nr. Of Operations

3x3 (standard) 9 9 8 26

3x3 (separated) 6 6 4 16

5x5 (standard) 25 25 24 74

5x5 (separated) 10 10 8 28

9x9 (standard) 81 81 80 242

9x9 (separated) 18 18 17 53

 Proprietary Imagination Technologies

Post Processing Effects 11 Revision .

The amount of texture lookups can be even more decreased when using hardware texture filtering. In
case of the 5x5 filter kernel the amount of texture lookups can be reduced from 10 to 6, yielding the
exact same amount of computation necessary as for the 3x3 kernel. The trick is to replace the texture
lookup for the outer weights with one which is in-between the outer texels:

Figure 16 Reducing the amount of texture lookups by using hardware texture filtering

The shift itself is calculated with respect to the original weights and the hardware filtering will linearly
combine the texels. The final step is to sum up the texture values and write the resulting value to the
colour output.

It is important that the texture coordinates, which are required for the texture lookups in the pixel
shader, have to be calculated in the vertex shader or have to be passed as uniform shader variables
in order to avoid dependant texture reads. Although these are supported, they incur a substantial
performance hit. Doing no dependent texture reads means that the texture sampling hardware can
fetch the texels sooner and hide the latency of accessing memory.

3.2.3. Blending
The last step is to blend the blurred image over the original image to produce the final result.

Figure 17 Overview of the separate Bloom steps

Therefore, the blending modes have to be configured and blending enabled so that the blurred image
is copied on top of the original one. Alternatively, you could setup an alpha value based modulation
scheme to control the amount of Bloom in the final image.

The single most important optimization in this case is to minimize the blending area as far as possible.
Blending is a fill-rate intensive operation, especially when being done over the whole screen. It is best
to avoid drawing as much as possible, especially on mobile platforms. For example, when the Bloom
effect shall be only applied to a subset of the visible objects, it is possible to optimize the final
blending stage:

• In the pre-processing stage, calculate a bounding volume for the objects which are affected.

Imagination Technologies Proprietary

Revision . 12 Whitepaper

• During runtime, transform the bounding volume into clip space and calculate a 2D bounding
volume, which encompasses the projected bounding volume. Add a small margin to the
bounding box for the glow.

• Draw the 2D bounding object with appropriate texture coordinates to blend the blurred texture
over the original image.

Figure 18 Bounding box derived rectangle (red) used for final blending

Figure 18 shows the blending rectangle which is derived from the objects bounding box. The
bounding box in this case is a simple axis aligned bounding box which is calculated during the
initialization. At runtime, the eight edges of the bounding box are transformed into clip space
coordinates, where the minimum and maximum coordinate components are determined. The blending
rectangle is then derived from these coordinates and the texture coordinates are adapted to the
vertex positions. Depending on the shape of the object, more suitable bounding volumes might be
appropriate, e.g. a bounding sphere.

This bounding box derived blending can lead to artefacts when the blending rectangles of two or more
objects overlap, resulting in sharp edges and highlights that are too bright. A workaround for this
overlap issue is to use the stencil buffer:

• Clear the stencil buffer to zero and enable stencil testing

• Configure the stencil test, so that blending is only applied to pixels where the stencil is zero and
increment after the operation

• Draw all bounding volumes and disable stencil test

This prevents multiple blend operations to a single pixel and produces the same result as a single
fullscreen blend.

 Proprietary Imagination Technologies

Post Processing Effects 13 Revision .

4. Reference Material & Contact Details

POWERVR Public SDKs can be found on the Imagination Technologies website:

http://www.imgtec.com/POWERVR/insider/POWERVR-sdk.asp

Further Performance Recommendations can be found in the Khronos Developer University Library:

http://www.khronos.org/devu/library/

Developer Community Forums are available:

http://www.khronos.org/message_boards/

Additional information and Technical Support is available from POWERVR Technical Support who
can be reached on the following email address:

devtech@imgtec.com

Imagination Technologies Proprietary

Revision . 14 Whitepaper

Imagination Technologies, the Imagination Technologies logo, AMA, Codescape, Ensigma, IMGworks, I2P,
PowerVR, PURE, PURE Digital, MeOS, Meta, MBX, MTX, PDP, SGX, UCC, USSE, VXD and VXE are

trademarks or registered trademarks of Imagination Technologies Limited. All other logos, products,
trademarks and registered trademarks are the property of their respective owners.

