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1. Introduction 
Generating efficient and detailed water effects can add a great deal of realism to programs that utilise 
real-time graphics. The purpose of this document is to highlight techniques that can be used in 
software running on POWERVR SGX platforms to render high quality water effects at a relatively low 
computational cost. 

The effect can be achieved in a variety of ways, but this document will focus on the use of vertex and 
fragment shaders to alter the appearance of a given plane to simulate a water effect. 
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2. Water Demo 
Although there are many examples of water effects using shaders that are readily available, they are 
all devised around the availability of high performance graphics chips on desktop platforms. The 
following sections of this document describe how the general concepts presented in these desktop 
implementations can be tailored to run at an interactive frame rate on the lower end of PowerVR SGX 
platforms, including the optimisations that were made to achieve the required performance. 

2.1. Geometry 
In the demonstration, the plane that the water effect is applied to has been calculated using the 
POWERVR Shell infinite plane equation, PVRTMiscCalculateInfinitePlane() . This function 
takes a plane equation (in the form (A,B,C,D)), the current camera position and the far clip plane 
distance as inputs and gives an output of four or five points that can be used to render the plane in 
OGLES2.0. As the effect does not require a highly tessellated surface, the calculated plane is 
adequate for the effect. To reduce the number of calculations that are required, the program assumes 
that the plane will always lie along the y-axis. 

The skybox used in the demo has been calculated using the Shell’s PVRTCreateSkybox()  method. 
The skybox texture is stored in the PVRTC 4bpp format and uses bilinear filtering with nearest MIP-
mapping to provide a good balance between performance and quality. 
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2.2. Bump Mapping 
To simulate the perturbation of the water’s surface, a normal map is used to bump the plane. The 
normal map used in the demo is z-axis major. The texture coordinate for each vertex is calculated in 
the vertex shader as the x and y values of the position attribute that has been passed into the shader, 
inVertex . To animate the surface of the water, a bump texture coordinate for the vertex is 
calculated by scaling the original texture coordinate and adding an offset to it (the bump’s translation). 
Once this value has been calculated, it is passed to the fragment shader as a varying so that the 
bump coordinate of each fragment will be interpolated automatically. The translation is calculated on 
the CPU each frame by adding the  multiplication of the bump’s velocity and delta time value since the 
last frame to the current translation value. Only the fractional component of the translation is given to 
the shader, which allows sufficient accuracy to be maintained. In the fragment shader, the bump 
coordinate is used to sample the normal map, the result of which is converted from texture-space into 
normal-space so that it can be used in further calculations. All calculations in the fragment shader are 
done in model-space as this is native to the object and saves redundant transformations into world, 
view space or any other representations of the object’s orientation.  

Using a single bump layer can make it very apparent that the perturbation is occurring along a linear 
path, and for this reason it is suggested that at least two scaled and translated bump layers are 
applied to the plane to make the surface perturbations look much more natural (Figure 1). 

 

Figure 1 Bump map animation over two frames 

Frame n Frame n + 1 
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2.3. Reflection render pass 
Reflection in the program is achieved through an additional render pass before the main render loop. 
The purpose of this is to render all of the geometry that needs to be reflected during the frame and 
storing the information as a texture that can easily be applied to the water’s surface during the main 
render. Before rendering the scene, the camera needs to be mirrored about the plane to give the 
correct view for the reflection. To do this, the inverse of the plane’s direction is saved as the second 
row of a mirror matrix (where the forth element is set to double the w value of the plane so scaling 
occurs correctly), which is then multiplied by the current view matrix to give the new view matrix 
required for the render. As the diagram in Figure 2 shows, only mirroring the camera will result in the 
inclusion of objects below the water’s surface that need to be ignored for the reflection to work 
correctly. This issue can be avoided by utilising a user defined clip plane along the surface of the 
water to remove all objects below the water from the render (See section 3.1 for information on how 
this can be achieved in OGLES2.0) . Figure 3 shows the clipped reflection scene stored as a texture 
in the demo. 

 

Figure 2 Mirrored camera for reflection Figure 3 Reflection stored as a texture 

The texture coordinate of each fragment is computed by dividing the fragment’s coordinate on the 
screen (retrieved using the gl_FragCoord  command) by the dimension of the window. To save a 
few cycles of computation in the fragment shader, the divide is removed and the fragment’s 
coordinate is instead multiplied by the reciprocal of the window’s dimension. Once the texture 
coordinate for the fragment has been found, it is then offset by subtracting the normal computed 
during the bump mapping process scaled by the WaveDistortion  uniform. The scaling factor used 
for the normal determines how severely the water is perturbed. The newly calculated texture 
coordinate is then used to sample the appropriate reflection texel for the fragment. The colour value of 
the fragment can then be output by the shader, resulting in the application of the perturbed reflection 
texture to the surface of the water, as shown in Figure 4. 
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Figure 4 Water effect using only a permutated 
reflection texture 

Figure 5 Water effect using the reflection 
and a constant mix with the  water colour 

 

 

Figure 6 Water effect using a permutated reflection  texture and alpha blending 
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Used alone, this reflection technique results in unrealistically reflective water, as objects lying beneath 
the surface or colouring caused by dirt within the body of water are not considered. There are several 
additional steps that can be taken at this stage to improve the quality of the effect depending on the 
end result you are hoping to achieve and the performance you require: 

• perform another render pass to create a refraction texture (Section 2.4) (Expensive – reduced 
the performance of the effect on the development hardware by 60%) 

• mix the colour value of the fragment with a water colour (Figure 5) (Good for simulating very 
murky water – reduced the performance by 9%) 

• alpha blend the water so objects below the water can be seen (Figure 6) (Reduces the 
realism of the effect when rendering deep water because the edges of submerged objects will 
still appear sharp – reduced the performance by 11%) 

It may be worth opting for one of the less intensive solutions if the water effect you require will be 
quite shallow as there may be little point applying refraction to this type of water effect. If you have 
chosen to mix the texel colour with a water colour, it can be done in one of the two ways discussed in 
section 2.4. 

As introducing a new render pass can be very expensive, there are a few steps that can be taken to 
improve the efficiency of this process: 

1. Render as little as possible: The CPU should be used to determine which objects 
are above the water plane and, if possible, which objects are intersecting the plane as 
these are the only objects that will be needed during the render. If this is still proving to be 
too expensive, the pass can be reduced to just draw the key objects in the scene, such as 
a skybox and terrain. 

2. Favour FBO use to fetching from the frame buffer: Rather than creating textures 
from the contents of the frame buffer, a frame buffer object with a texture bound to it 
should be used to save the output of the render pass to a texture (See the “OpenGL ES 
2.0 Application Development Recommendations” document available on the PowerVR 
Developer Relations website for more information). 

3. Render to texture at the lowest comfortable resolut ion:  As the reflection texture is 
going to be distorted anyway, you can get away with using a fairly low resolution. A 
texture 256x256 has proven effective in the demo, but depending on the maximum 
resolution of the screen on the platform you are developing for, this resolution could be 
reduced further. Keep in mind that a drop from 256x256 to 128x128 will result in a 75% 
lower resolution.  

4. Avoid using discard to perform clipping:  Although using the discard keyword 
works for clipping techniques, its use negates performance advantages that the 
POWERVR architecture offers (See section 3.1 for more information). 
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2.4. Refraction render pass 
In a case where the rendered water should appear to be fairly deep, adding refraction to the 
simulation can vastly improve the quality for the effect. To do this, an approach similar to that taken 
during the reflection render pass should be used, where all objects below the water are rendered 
(through a mix of rough clipping on the CPU and using the inverse of the water plane to clip during the 
render) and then saved to a texture (Figure 8). If the effect you require should produce very clear 
water, you will want to render all elements of the scene below the water, including the skybox (or 
similar object if your application uses one) so that all of these items are rendered to a texture (Figure 
9). If you want to produce murky water, you can use a fogging effect to fade out objects as they 
submerge further (See section 2.4.1 for more information).  

Once the scene has been rendered to a texture, it can then be utilised by the water’s fragment 
shader. The texture coordinate found using the process discussed in section 2.3 is also used to 
sample the refraction texture. Once the texel for the fragment has been determined, it needs to be 
mixed with the reflection texel that has been sampled. This can either be done by mixing the textures 
together by a constant amount (e.g. 50/50), or using an equation such as the Fresnel term to provide 
a dynamic mixing of colour based on the current viewing angle. Figure 7 shows the full effect of the 
water, where reflection and refraction textures are mixed using the Fresnel term. 

 

Figure 7 Full water effect 
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2.4.1. Fogging 
A fogging effect to simulate depth can be accomplished by setting a maximum fogging distance 
(beyond which objects are no longer visible) and using the value to perform a linear fade between the 
object’s original colour and the fogging colour based on the object’s depth. To do this, the reflection 
pass must use the water’s colour as the clearing colour and objects such as the skybox that should 
appear infinite, and therefore past the maximum fogging distance, should be omitted from the render. 
As the program assumes the water will always lie on the y-axis, the w component of the water plane is 
negated and passed into the shader as the water height. The reason for the negation is that it allows 
the value to refer to the plane’s displacement from the centre of the world instead of specifying how 
far along the plane’s normal (positive y-axis) it is displaced. The depth of the vertex is then calculated 
as the water height minus the y-axis value of the vertex in world-space, the result of which is then 
passed to the fragment shader as a varying float. The fragment shader then calculates the mix of the 
fogging colour and the object’s colour as the fragment’s depth divided by the maximum fogging depth 
(which is implemented as the fragment’s depth multiplied by the reciprocal of the maximum water 
depth to save a few cycles). This mixing value can then be used to determine how much of the 
fogging colour is applied to the fragment. The maximum fogging value can also be used on the CPU 
to only render objects that are below the surface and above the maximum fogging distance. This is a 
good way to cut down the number of objects that need to be rendered during the refraction pass. To 
perform a murky render pass, the clear colour should be set to the water colour (Figure 10). On the 
development hardware, disabling the fogging effect gave a 3.5% increase in performance. 

 

  

Figure 8 Refraction stored as a texture  

  

Figure 9 Water effect using only the refraction 
texture (without fogging) 

Figure 10 Water effect using only the 
refraction texture (with fogging) 
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2.4.2. Fresnel term 

  

Figure 11 Small angle of Fresnel reflection Figure 12 Large angle of Fresnel reflection 

The Fresnel term is used to determine how much light is reflected at the boundaries of two semi-
transparent materials (the rest of which is absorbed through refraction into the second material). The 
strongest reflection occurs when the angle of incidence of the light ray is large, and, adversely, 
reflection decreases as the angle of incidence reduces. To clarify, the light direction used in these 
calculations is the light that would be seen by the eye, not the direction of any lights declared in the 
world (calculated in the vertex shader as the position of the eye in model space minus the position of 
the vertex). The approximation of the Fresnel term used in the demo is determined using the following 
formula: 

 
 R(0) = pow((n1 – n2),2) / (n1 + n2)^2 
R(alpha) = (1 – R(0)) * (1 – cos(alpha))^5 + R(0) 

 

To save computation time, the result of the equation above is calculated outside of the application 
using the values in the tables below: 

 

Material Index of refraction 

Air 1.000293 

Water (At room temperature) 1.333333 

 

 Fresnel approximation 

R(0) 0.02037 

1 – R(0) 0.97963 
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The angle between the normal of the water and the water-to-eye direction is found by calculating the 
dot product of the two values after they have both been normalised. During implementation, the 
assumption is made that the accumulated normal found during bump mapping is already normalised 
(although this is not always the case) and the normalised value of the water-to-eye vector is found by 
performing a texture lookup of a normalisation cube map to save cycles (See source code for more 
information). Once the angle has been found, the following calculation is performed to determine the 
mix between reflection and refraction for the fragment: 

 
airWaterFresnel = 1.0 – fEyeToNormalAngle 
airWaterFresnel = airWaterFresnel^5; 
airWaterFresnel = ((1-R(0)) * fAirWaterFresnel) + R (0) 

 

The resultant value of this calculation is used to linearly interpolate between the two texture colours 
using the GLSL ES mix() method. Using the Fresnel calculation instead of a constant mix on the 
development hardware reduces the performance by 22%, but gives a much more realistic output. 
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3. Optimisations 
 

3.1. User defined clip planes in OpenGLES 2.0 
Although OpenGLES 2.0 allows the use of a programmable graphics pipeline, which allows this water 
effect to work so well, there are some drawbacks that occur due to the reduced functionality 
compared to its desktop counterpart, OpenGL. One of the features that are not available, but required 
to produce a good quality reflection and refraction, are user defined clip planes. Many OpenGLES 2.0 
text books suggest performing a render pass that uses the discard keyword in the fragment shader so 
that fragments beyond the user defined clip plane will be ignored. Although this method works and will 
produce the required output, using the discard keyword is very expensive because the program has to 
reach the fragment shader before it realises that the fragment is not required, which is a significant 
waste of processing time. Additionally, using the discard keyword negates performance advantages 
that the POWERVR tile-based deferred rendering architecture offers. This is discussed in detail in the 
OpenGL ES 2.0 Application Development Recommendations document that is packaged with the 
SDK. 

To solve this problem, a projection matrix modifying technique can be used. The projection matrix is 
typically used to convert all of the objects in the scene from view space coordinates into clip space 
and then perspective space. Part of this process is clipping objects that do not fall between the near, 
far, left, right, top and bottom planes of the viewing frustum. If you consider the function of the 
projection matrix this way, it becomes apparent that the program already has a built in mechanism for 
clipping. For this reason, the projection matrix can be altered to set the near clipping plane as a plane 
that the user has defined (Figure 13). 

 

Figure 13 Birds-eye-view of a projection matrix wit h a proposed user defined clip plane 

For this technique to work, the user defined clipping plane has to be converted into view space. As 
the plane only has direction (as it should be in the form (A, B, C, D)), the plane must be multiplied by 
the inverse of the view matrix to convert it into view space. For this technique to work, it is assumed 
that the w component of the view space plane is negative so that the clipping plane is facing away 
from the camera (as the near clipping plane of the projection matrix would normally). This does restrict 
the flexibility of the clipping method, but does not pose a problem for the clipping required in the 
demo. 

The near clipping plane is defined in the projection matrix as the third and fourth rows, so these are 
the values that need to be altered. For perspective correction to work, the fourth row must keep the 
values (0,0,-1,0). For this reason, the third row has to be set to the following: 

 
row3 = (clipPlane.x, clipPlane.y, clipPlane.z + 1, clipPlane.w) 
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Unfortunately, the projection matrix modifying technique is not quite this straight forward. By changing 
the position of the near plane, the far plane is skewed and no longer remains parallel with the near 
plane (Figure 14). Although this problem cannot be fixed fully, the effect can be minimised. This is 
done by scaling the clip plane before the third row is set, which causes the orientation of the far 
clipping plane to change (Figure 15). To do this, the point that lies furthest from the near plane in NDC 
(Normalised Device Coordinates) must be calculated, using the following equation: 

 
clipSpaceCorner = (sgn(clipPlane.x), sgn(clipPlane. y), 1.0, 1.0) 
clipSpaceCorner = clipSpaceCorner * projection.inve rse() 

 

Using the newly calculated clip space corner, the plane can be scaled using this equation: 

 
clipPlane = clipPlane * (2.0 / clipSpaceCorner . cl ipPlane) 

 

  

Figure 14 Birds-eye-view of projection matrix 
with broken far plane (with the new near and 

far planes meeting at z = 0) 

Figure 15 Birds-eye-view of projection matrix 
with optimised far plane (with new near and 

far planes meeting at z = 0) 

Although this technique may seem harder to understand than the discard method of clipping, it is 
significantly faster as it allows the graphics hardware to perform clipping for almost no additional cost.  
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3.2. #define in GLSL 
During production of this demo, it became apparent that using Booleans for if and if-else statements 
in vertex and fragment shaders resulted in at least an extra cycle for each decision point. This quickly 
became an issue as simple shaders that were covering large portions of the screen, such as the 
skybox, were processing needless cycles. Rolling out the code into a number of nearly identical 
shader files would provide a way around this issue, but would cause a lot of code duplication. To 
allow single shader files to be used repeatedly for multiple code paths, the #define pre-processor 
directive was used with #ifdef and #else in shader files so that code paths could be specified during 
compilation-time instead of at run-time. The SDK allows this when using the method 
PVRTShaderLoadFromFile()  by providing inputs for the additional parameters aszDefineArray  
and uiDefArraySize , where aszDefineArray  is a pointer to an array of strings holding defines 
the user wants to append and uiDefArraySize  is the number of defines in the array. This method 
automatically provides the #define and new-line character that need to be appended to the source 
code for each define, so the user only needs to provide an array of strings for the names i.e. 
A_USEFUL_DEFINE. 

Once a number of shaders have been loaded in this way, the shader used for an object can be 
changed during run-time to a shader with a different code path. Although this method creates a 
shader for each decision path (which uses more memory, but would have also been done if the code 
was rolled out in different files), it allows the performance of shaders to be improved by removing 
redundant cycles. 

3.3. Further Optimisations/Improvements 

3.3.1. Normalisation cube map 
As texture lookups are cheaper than performing normalisation operations on three dimensional 
vectors, normalisation in the demo is performed using a lookup to a normalisation cube map. For 
demonstration purposes the method of generating the normal map has been left in the code, but time 
spent initialising the application could be saved by loading a pre-existing normalisation map instead. 
The theory behind this method is simple; take a directional vector as the texture coordinate of the 
lookup and return the colour at that position. This colour represents the normalised value of any 
directional vector that points to its position. As the value retrieved using this technique is in texture-
space (0,1), a conversion into normal-space (-1,1) needs to be used to allow the value to be used in 
further calculations. Using this method can half the number of cycles required to normalise a vector. 

3.3.2. Scale water distortion 
Without scaling the amount of distortion that is applied to each fragment, water in the distance can 
end up sampling the reflection and refraction textures at too big an offset, which gives water in the 
distance an unrealistic degree of distortion. Additionally, the bigger offset for distant fragments results 
in a higher amount of texture read cache misses. By scaling the amount of distortion that is applied to 
a given fragment, the visual quality of the effect can be improved and the number of stall cycles 
caused by texture cache misses can be reduced. This is done in the demo by dividing the wave’s 
distortion value by the distance between the camera and the fragment’s position (so fragments further 
from the camera are distorted less). Implementing this change reduces the performance of the app 
<1% as most of the additional maths in the fragment shader is covered up by the stall cycles caused 
by the texture reads and its use reduces the number of stall cycles caused by the reads (which 
reduces the texture read bottleneck). 
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3.3.3. Render the water effect to a texture 
Due to the heavy use of the fragment shader to produce the effect, the demo is fragment shader 
limited. To reduce the overhead of this bottle neck, the water effect can be rendered to a texture at a 
lower resolution and then applied to the water plane during the final render pass. This technique 
benefits the speed of the demonstration by reducing the number of fragments that are rendered using 
the water effect. This can be further reduced by rendering objects that will obscure areas of the water 
in the final render pass, such as the demo’s terrain and boat. Although the introduction of more 
objects to the render can improve the speed of the water effect, the inaccuracies caused by mapping 
the texture to the final water plane can result in artefacts around the edges of models that were used 
during the low resolution pass. This is generally not that noticeable, providing the shaders used for 
the additional objects in the low resolution pass are the same as the shaders used in the final render 
(e.g. rendering models without lighting during the low resolution pass will cause highlights around 
dark edges of models in the final pass, so this should be avoided). One of the best ways to steer clear 
of the problems caused by the scaling is to avoid drawing objects that are very detailed around their 
edges that overlap the water as this reduces the likelihood of artefacts occurring. In the demo, the 
boat is omitted from the water’s render to texture pass as it is too detailed to be rendered without 
causing artefacts and does not give as big a benefit as the terrain does when covering areas of the 
water (Figure 16 & Figure 17). 

  

Figure 16 Low resolution water render Figure 17 Low resolution render applied to the 
final plane 

When rendering to a texture at a 256x256 resolution and performing the final render pass to a 
640x480 screen, the reduction in quality is only slightly noticeable, but the performance is increased 
by ~18%. 
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3.3.4. Removing artefacts at the water’s edge 
One of the biggest problems with shader effects that perturb texture coordinates is the lack of control 
over the end texel that is chosen. Due to the clipping that is implemented in the reflection and 
refraction render passes, it is very easy for artefacts to appear along the edges of objects intersecting 
the water plane when the sampled texel is taken from inside the object. The colour of the texel inside 
the object is usually either the colour of an object that lies behind the object, but has not been clipped, 
or the clearing colour. The simplest workaround to this problem is to offset the clipping plane that is 
being used for the render pass further back along the plane’s direction (in the demo’s case, along the 
positive y-axis by default). In the case of the refraction render pass, this will cause some of the 
geometry above the water to be included in the rendered image, which, although not an accurate 
solution, means that perturbed texture coordinates into the object will cause the colour from just 
above the surface to be used (Figure 18). Despite being inaccurate, this fix allows the majority of the 
artefacts to be removed from the effect for very little additional computation. The downside of this 
method is that the reflection and refraction textures will include some fragments that should have 
been omitted (e.g. along the left and right sides of objects facing the camera there may be 
reflected/refracted pixels of objects that are not actually there).  

 

Figure 18 Full effect using artefact fix 

Another way to compensate for the artefacts, and improve the aesthetics of the effect, is to use fins or 
particle effects along the edges of objects intersecting the water to give the appearance of a wake 
where the water is colliding with the objects. The drawback of these techniques is that they both 
require the program to know where in the scene objects are intersecting the water, which can be very 
expensive if the water height is changing or objects in the water are moving dynamically. 
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4. Reference Material & Contact Details  

POWERVR Public SDKs can be found on the Imagination Technologies website: 

 

http://www.imgtec.com 

 

Additional OpenGL-ES Programming information can be found on the Khronos Website: 

 

http://www.khronos.org/ 

 

Developer Community Forums are available: 

 

http://www.khronos.org/message_boards/ 

 

Additional information and Technical Support is available from POWERVR Technical Support who 
can be reached on the following email address: 

 

devtech@imgtec.com 
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